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Motivation

SCM Introduction

� Both DRAM and Storage Characteristics

� Byte-addressable, Non-volatile

� PRAM, MRAM, FRAM, RRAM, …

� Technical Hurdles for using main memory

� Performance

� Endurance 

NVRAM (or SCM)

(Source: M. Qureshi et al., “Scalable High Performance Main Memory System

Using Phase-Change Memory Technology”, ISCA,09)
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Motivation

Previous research

� M. Qureshi, et al., "Scalable high performance main memory system using 
phase-change memory technology", ISCA’09. 
� Hybrid main memory, Caching, Delayed writes, Line-level writes

� P. Zhou et al., "A durable and energy efficient main memory using phase change 
memory technology“, ISCA’09.
� Removing redundant bit-writes, Row shifting and segment swap

� B. Lee et al., "Architecturing phase change memory as a scalable dram 
alternative", ISCA’09. 
� Partial writes: track dirty data in CPU cache

� A. Wang et al., "Conquest: Better performance through a disk/persistent-ram 
hybrid file system“, USENIX’02.

� J. Condit et al., "Better i/o through byte-addressable, persistent memory", 
SOSP’09. 

� A. Caulfield et al., "Moneta: A high-performance storage array architecture for 
next-generation, non-volatile memories", MICRO’10. 

(Source: M. Qureshi’s ISCA’09 paper) (Source: P. Zhou’s ISCA’09 paper) 
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Motivation

Previous research

� Mainly based on hardware-level approach

Any feasible OS-level approach?

� Focusing on endurance issue

� Fair page frame allocation for wear-leveling

� Instincts 

� Positive relation between allocation and write

� Burst writes can be mitigated by CPU cache 

� Can obtain long term wear-leveling without keeping allocation 

counts per each page frame
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Observations

Page frame allocation and write distribution

� Test environments: Intel 8 cores, 32GB DRAM, 450GB*10 Disks

� OS: Linux 2.6.32

� Workload: Unixbench 
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Observations

Memory manager in Linux

� Lazy buddy system

� Re-allocate the recently freed page frames with higher probability

� Lazy layer deteriorates unfairness

� Group management makes it difficult to employ an allocation scheme 

based on allocation-counts of each page frame 

� Is it possible to manage each page frame individually for fair allocation?
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Observations

Request types: Single vs. Multiple 

� Same test environments

� Mainly single page frame requests

Kernel
Compile

Lmbench Stream Unixbench Dbench Tbench

Multiple page 106316 9442 25 3195113 351 366

Single page 85977206 89195105 1504996 213534514 38052300 112785688
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Observations

Service layer

� Same test environments

� Large portion of requests are handled in the buddy layer

� Depend on workload characteristics (burstiness)

Kernel
Compile

Lmbench Stream Unixbench Dbench Tbench

the buddy layer 78192436 76376010 1504080 77406822 22464403 26593767

the lazy layer 7784770 12819095 916 136127692 15587897 86191921
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Observations

Response time

� Same test environments

� Significant Buddy layer overhead (for splitting and coalescing)

� Large response time variations 

� Get sidetracked
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Proposal: iBuddy

New buddy system

� Fair allocation (based on allocation counts)

� Overcome the unfairness problem of Lazy layer 

� Individual page frame management

� Reducing the splitting and coalescing overheads

� In addition, efficient handling multiple page frames requests

� iBuddy: Inverse (or Individual) Buddy 
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Proposal: iBuddy

Structure

� Individual page frame management

� Dual meaning bitmap

� Splitting or coalescing occurs only for multiple page frames request 

(laziest buddy)
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Proposal: iBuddy

Allocation

� after handing two single page frame requests 
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Proposal: iBuddy

Free

� after handing a single page frame (10) free request
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Proposal: iBuddy

Summary of iBuddy characteristics

Lazy Buddy System Lazy iBuddy system

When Coalescing happened Page is freed into buddy layer Multiple page allocation request

When Splitting happened
Page is allocated from buddy 

layer
Multiple page free request

Time 

complexity

Single page O(logn) O(1)

Multiple pages O(logn) O(n)

Lock granularity on buddy layer Coarse-granularity Fine-granularity

The number of Pages Management  Policy 

on the lazy layer
Bulky Bypass

Performance improvement ratio 
(baseline : Lazy Buddy system)

- 32%

Standard deviation 1400 cycles 400 cycles
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Performance Evaluation

Allocation/Free response time 

� Test environments: Intel 8 cores, 32GB DRAM, 450GB*10 Disks

� OS: Linux 2.6.32

� Workload: Kernel compile, Lmbench, Stream, Unixbench, 

Dbench, Tbench 



NVRAMOS 11

Performance Evaluation

Performance Improvement Analysis
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Performance Evaluation

Variation of Response time
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Performance Evaluation

But, …

� Total execution time of benchmark 

1 2 4 8 16 32

Number of Threads

Lazy Buddy 1 1 1 1 1 1

Lazy iBuddy 1.054610486 1.053342336 1.021406728 0.91680208 0.943805598 0.93977559

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 

( 
b

a
s
e

li
n

e
 :

  
L
a

z
y
 B

u
d

d
y
 S

y
s
te

m
)

Lmbench (Normalized Results)

Lazy Buddy

Lazy iBuddy



NVRAMOS 11

Performance Evaluation

Possible causes about performance degradation for  

small thread cases
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Conclusion

New buddy system: iBuddy

� Inverse thinking 

� Managing page frames individually

� Splitting and coalescing occurs on multiple page frames request

� But, the original lazy buddy has its own strong points

� CPU cache, multibank

� Can keep large consecutive page frames 

� Issues

� Multicore/Multibank 

• Multibank parallelism

• Multicore issues (lock issues in the buddy system)

• NUMA issues

� Fair-allocation for SCM

• RB-tree

• Performance degradation issues


