
2011 NVRAMOS

Operating System Supports

for SCM as Main Memory Systems

(Focusing on iBuddy)

2011. 4. 19

Jongmoo Choi

http://embedded.dankook.ac.kr/~choijm

NVRAMOS 11

Contents

Overview

Motivation

Observations

Proposal: iBuddy (inverse Buddy)

Performance Evaluation

Conclusion

NVRAMOS 11

Overview

Get sidetracked

삼천포삼천포삼천포삼천포진주진주진주진주

NVRAMOS 11

Motivation

SCM Introduction

� Both DRAM and Storage Characteristics

� Byte-addressable, Non-volatile

� PRAM, MRAM, FRAM, RRAM, …

� Technical Hurdles for using main memory

� Performance

� Endurance

NVRAM (or SCM)

(Source: M. Qureshi et al., “Scalable High Performance Main Memory System

Using Phase-Change Memory Technology”, ISCA,09)

NVRAMOS 11

Motivation

Previous research

� M. Qureshi, et al., "Scalable high performance main memory system using
phase-change memory technology", ISCA’09.
� Hybrid main memory, Caching, Delayed writes, Line-level writes

� P. Zhou et al., "A durable and energy efficient main memory using phase change
memory technology“, ISCA’09.
� Removing redundant bit-writes, Row shifting and segment swap

� B. Lee et al., "Architecturing phase change memory as a scalable dram
alternative", ISCA’09.
� Partial writes: track dirty data in CPU cache

� A. Wang et al., "Conquest: Better performance through a disk/persistent-ram
hybrid file system“, USENIX’02.

� J. Condit et al., "Better i/o through byte-addressable, persistent memory",
SOSP’09.

� A. Caulfield et al., "Moneta: A high-performance storage array architecture for
next-generation, non-volatile memories", MICRO’10.

(Source: M. Qureshi’s ISCA’09 paper) (Source: P. Zhou’s ISCA’09 paper)

NVRAMOS 11

Motivation

Previous research

� Mainly based on hardware-level approach

Any feasible OS-level approach?

� Focusing on endurance issue

� Fair page frame allocation for wear-leveling

� Instincts

� Positive relation between allocation and write

� Burst writes can be mitigated by CPU cache

� Can obtain long term wear-leveling without keeping allocation

counts per each page frame

NVRAMOS 11

Observations

Page frame allocation and write distribution

� Test environments: Intel 8 cores, 32GB DRAM, 450GB*10 Disks

� OS: Linux 2.6.32

� Workload: Unixbench

10000

2000

4000

8000

6000

0x20000000 0x40000000 0x60000000 0x80000000

+ : 쓰기쓰기쓰기쓰기 연산연산연산연산 횟수횟수횟수횟수

X : 페이지페이지페이지페이지 할당할당할당할당 횟수횟수횟수횟수

Physical Memory Address

C
o
u
n
t

NVRAMOS 11

Observations

Memory manager in Linux

� Lazy buddy system

� Re-allocate the recently freed page frames with higher probability

� Lazy layer deteriorates unfairness

� Group management makes it difficult to employ an allocation scheme

based on allocation-counts of each page frame

� Is it possible to manage each page frame individually for fair allocation?

24

23

22

21

20

0 0 0 0 0 0 0 0

0 0 0 0

0 0

0 0 0 1 0 0 0 0

1 0 0 0

0 0

1 0

0

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

0

1

2

3

4

0

8, 9

0, 1, 2, 3, 4, 5, 6, 7

11

Bitmap Free listBuddy

Group

Lazy
list

10 13

Lazy
Layer

Buddy
Layer

NVRAMOS 11

Observations

Request types: Single vs. Multiple

� Same test environments

� Mainly single page frame requests

Kernel
Compile

Lmbench Stream Unixbench Dbench Tbench

Multiple page 106316 9442 25 3195113 351 366

Single page 85977206 89195105 1504996 213534514 38052300 112785688

0%

20%

40%

60%

80%

100%

R
e

q
u

e
s
t

 r
a

ti
o

NVRAMOS 11

Observations

Service layer

� Same test environments

� Large portion of requests are handled in the buddy layer

� Depend on workload characteristics (burstiness)

Kernel
Compile

Lmbench Stream Unixbench Dbench Tbench

the buddy layer 78192436 76376010 1504080 77406822 22464403 26593767

the lazy layer 7784770 12819095 916 136127692 15587897 86191921

0%

20%

40%

60%

80%

100%

S
e

r
v
ic

e
 r

a
t
io

NVRAMOS 11

Observations

Response time

� Same test environments

� Significant Buddy layer overhead (for splitting and coalescing)

� Large response time variations

� Get sidetracked

NVRAMOS 11

Proposal: iBuddy

New buddy system

� Fair allocation (based on allocation counts)

� Overcome the unfairness problem of Lazy layer

� Individual page frame management

� Reducing the splitting and coalescing overheads

� In addition, efficient handling multiple page frames requests

� iBuddy: Inverse (or Individual) Buddy

NVRAMOS 11

Proposal: iBuddy

Structure

� Individual page frame management

� Dual meaning bitmap

� Splitting or coalescing occurs only for multiple page frames request

(laziest buddy)

NVRAMOS 11

Proposal: iBuddy

Allocation

� after handing two single page frame requests

NVRAMOS 11

Proposal: iBuddy

Free

� after handing a single page frame (10) free request

NVRAMOS 11

Proposal: iBuddy

Summary of iBuddy characteristics

Lazy Buddy System Lazy iBuddy system

When Coalescing happened Page is freed into buddy layer Multiple page allocation request

When Splitting happened
Page is allocated from buddy

layer
Multiple page free request

Time

complexity

Single page O(logn) O(1)

Multiple pages O(logn) O(n)

Lock granularity on buddy layer Coarse-granularity Fine-granularity

The number of Pages Management Policy

on the lazy layer
Bulky Bypass

Performance improvement ratio
(baseline : Lazy Buddy system)

- 32%

Standard deviation 1400 cycles 400 cycles

NVRAMOS 11

Performance Evaluation

Allocation/Free response time

� Test environments: Intel 8 cores, 32GB DRAM, 450GB*10 Disks

� OS: Linux 2.6.32

� Workload: Kernel compile, Lmbench, Stream, Unixbench,

Dbench, Tbench

NVRAMOS 11

Performance Evaluation

Performance Improvement Analysis

NVRAMOS 11

Performance Evaluation

Variation of Response time

NVRAMOS 11

Performance Evaluation

But, …

� Total execution time of benchmark

1 2 4 8 16 32

Number of Threads

Lazy Buddy 1 1 1 1 1 1

Lazy iBuddy 1.054610486 1.053342336 1.021406728 0.91680208 0.943805598 0.93977559

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

(
b

a
s
e

li
n

e
 :

L
a

z
y
 B

u
d

d
y
 S

y
s
te

m
)

Lmbench (Normalized Results)

Lazy Buddy

Lazy iBuddy

NVRAMOS 11

Performance Evaluation

Possible causes about performance degradation for

small thread cases

Order 5

Order 4

Order 3

Order 2

Order 1

Order 0

0 1 2
...

15

Order 5

Order 4

Order 3

Order 2

Order 1

Order 0

8

0

4 12

10 14 2 6

11 9 3 13 1 15 5 7

Original Buddy System

ibuddy Buddy System

0 1 2 ... 15

8 0 4 12 10 …
5 7

Allocation
Sequence

Allocation
Sequence

Memory Access Sequence

Address Mapping

Transaction Queue Scheduler

FR-FCFS

Data Bus

C
o
m

m
a
n
d
 B

u
s

Buffer1 Buffer2 Buffer3 Buffer4

Page 0

Page 4

Page 8

Page 12

Page 1

Page 5

Page 9

Page 13

Page 2

Page 6

Page 10

Page 14

Page 3

Page 7

Page 11

Page 15

R
o
w

 A
c
c
e
s
s

Column

Access

Bank1 Bank2 Bank3 Bank4

Memory

Controller

Row Buffer

DRAM page

NVRAMOS 11

Conclusion

New buddy system: iBuddy

� Inverse thinking

� Managing page frames individually

� Splitting and coalescing occurs on multiple page frames request

� But, the original lazy buddy has its own strong points

� CPU cache, multibank

� Can keep large consecutive page frames

� Issues

� Multicore/Multibank

• Multibank parallelism

• Multicore issues (lock issues in the buddy system)

• NUMA issues

� Fair-allocation for SCM

• RB-tree

• Performance degradation issues

