Long-term Research Issues in SSD

NVRAMOS '2011

한양대학교

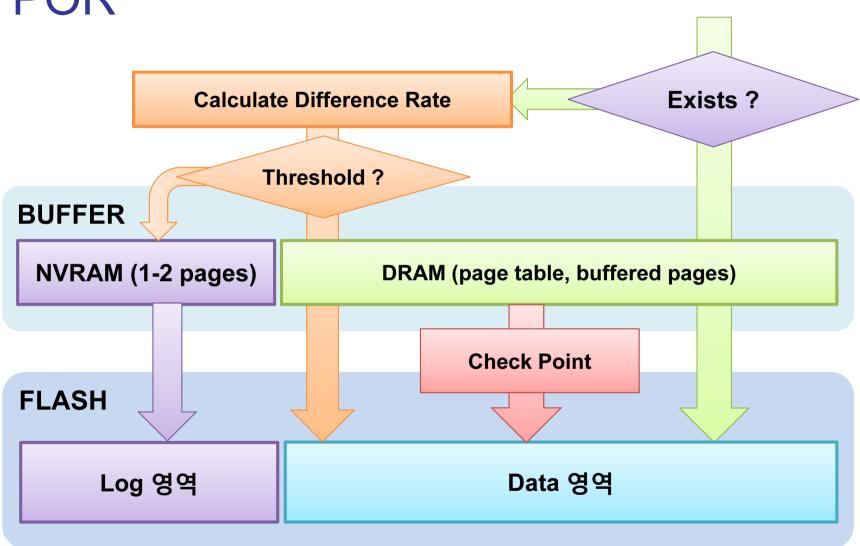
강 수 용

Research Issues: At-a-Glance

- Inside SSD
- Inside Computer Systems
- Inside Independent Storage Systems
- Inside Large/Networked Systems

Inside SSD (1)

- Mapping for TB-scale SSDs
 - □ Page mapping with caching is enough?
 - For TB-scale workloads (MS exchange server, TPC-E), 64MB DRAM could accommodate the entire working set
 - When subpage (sector) mapping is used?
 - Multiple granularity mapping is worth investigating
 - Mapping for compressed/deduplicated data



Inside SSD (2)

- Reliability
 - □ In-Flash data reliability
 - ECC/CRC-based short-term reliability
 - □ Adaptive ECC : SandForce
 - □ E-MLC : SMART
 - □ "Using flash memories as SIMO channels for extending the lifetime of solid-state drives", ICECS, 2010
 - → Read an erroneous page multiple times and correct errors
 - Redundancy-based long-term reliability
 - □ RAID-5 based data reliability: SandForce
 - □ DRAM data reliability (POR)
 - Cached metadata and buffered data
 - □ Logging & Checkpointing-based approach
 - ☐ High speed NVRAM-based approach

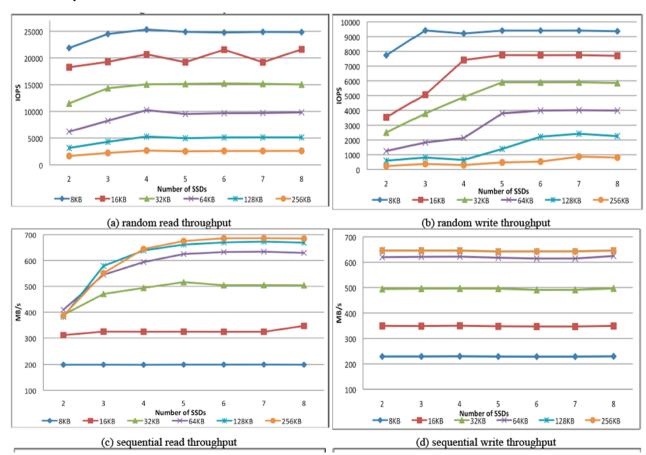
POR

Inside Computer Systems

- Traditional short-term issues
 - □ Intelligent device driver: Fusion-IO
 - "Beyond block I/O: rethinking traditional storage primitives", HPCA'11
 - → 'Atomic Write' primitive implemented in the device driver
 - ☐ Enriching interface commands set
- Traditional long-term issues
 - □ SSD Filesystem
 - "DFS: A file system for virtualized flash storage", FAST'10
 - → removed duplicated functions (block allocation, free block management, file mapping, etc) from filesystem
 - □ All-New Memory-Storage stack in OS considering both SSD and Next-Generation NVRAM

Inside Computer Systems

- New issue
 - □ Object-based Storage Device and Filesystem
 - "Block management in solid-state devices", USENIX ATC, 2009
 - "Object-based SSD (OSSD): Our Practice and Experiences", Linuxcon 2010


Inside Storage Systems

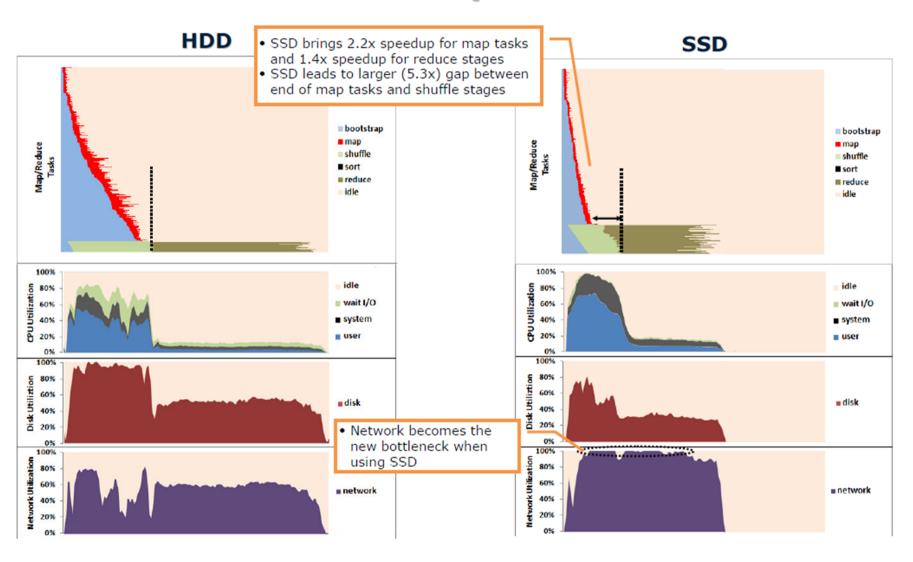
SSD Array

- □ "Differential RAID: Rethinking RAID for SSD Reliability", TOS ,2010
 - → Unbalanced allocation of parity blocks across SSDs in RAID
- □ "Building Large Storage based on Flash Disks", ADMS, 2010
 - → The bottleneck of the SSD RAID is controller
- □ "Flash-Aware RAID Techniques for Dependable and High-Performance Flash Memory SSD", TOC,2011

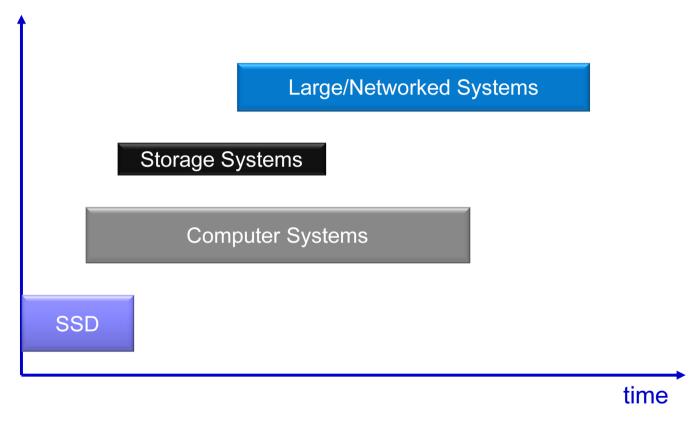
SSD RAID – Scalability Problem

■ RAID 0, Intel X25-E 64GB

Inside Storage Systems


- Hybrid Array
 - □ SSD + HDD
 - "Reliability and Performance Enhancement Technique for SSD array storage system using RAID mechanism", ISCIT 2009
 - → Parity blocks for Hot blocks make unbalanced write counts across SSDs in RAID. Completely contradictory motivation with Differential RAID.
 - "Hybrid RAID With Dual Control Architecture for SSD Reliability", AIP 2009
 - → Use HDD (instead of SSD) for parity disk of RAID-4 SSD array
 - □ NVRAM + SSD (or HDD)
 - "Using a Shared Storage Class Memory Device to Improve the Reliability of RAID Arrays", PDSW 2010
 - → Use SCM as a shared additional parity store among multiple RAID-5 arrays
 - □ NVRAM + SSD + HDD
 - □ Combined LBA space or Separated LBA space
 - SSD/NVRAM as a cache? or a final store?
 - Same issue in Hybrid disks

Inside Large/Networked Systems


- SSD as a Storage for High-Performance Computing Systems
 - □ Data-Intensive computing
 - ☐ Storage for Map-Reduce Framework
- SSD as a Networked Cache/Buffer
 - □ SSD as a metadata store in the Cloud

HDD vs. SSD for Hadoop Sort

Predicted Future Research Trends

§Thickness of each bar represents the popularity of the issue