
Smart SSD Controller Design
for Improving
Random Read Performance

Yongsoo Joo
Embedded Software Research Center

Ewha Womans University

Supported by WCU (World Class University) program through
National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (R33-10085).

Overview

 Low random read performance of SSDs
 For workloads having low concurrency

 Intelligence functions
 Overlapping CPU computation & SSD accesses
 Increasing queue depth

 Smart SSD controller
 Integrating the proposed methods into the SSD controller

2

SSD Performance Optimization

 Single chip performance of MLC NAND flash
 Page load: 30MB/s
 Page program: 7MB/s
 Data from Micron (http://onfi.org/presentations/)

 Page size: 4KB x 2 (planes)
 Page load/program: 50us/900us, data I/O: 211us

 HDD performance
 Sequential read/write: about 100MB/s
 Random 4KB read: less than 1MB/s

 How to increase SSD performance?
 By exploiting SSD parallelism (8-16 chips per SSD)

3

SSD Performance Optimization

 Sequential I/O throughput
 Increasing the number of channels & dies per channels
 Data interleaving, improving an I/O interface, etc.

 Write performance
 Efficient garbage collection and wear leveling
 Over-provisioning for securing free blocks
 I/O ordering & merging
 Trim command

 Multiple concurrent I/O requests
 Multi-channel architecture & controller support
 Native command queueing (NCQ)

 Queue depth: up to 32

4

SSD Performance Metrics

 The four corners
 Sequential read (SR)
 Sequential write (SW)
 Random read (RR)
 Random write (RW)

5

SSD Performance Metrics

 The six corners
 Sequential read (SR)
 Sequential write (SW)
 Random read with QD=1 (RR1) and QD=32 (RR32)
 Random write with QD=1 (RW1) and QD=32 (RW32)

 Queue depth (QD)
 The number of outstanding I/O requests being processed in the

SSD at a given time

6

SSD Performance Optimization

 Sequential I/O throughput: SR/SW
 Increasing the number of channels & dies per channels
 Data interleaving, improving an I/O interface, etc.

 Write performance: SW/RW1/RW32
 Efficient garbage collection and wear leveling
 Over-provisioning for securing free blocks
 I/O ordering & merging
 Trim command

 Multiple concurrent I/O requests: RR32/RW32
 Multi-channel architecture & controller support
 Native command queueing (NCQ)

 Queue depth: up to 32

7

Performance Improvement

8

Device Kingspec X25-M G2 OCZ Vertex 3

Interface PATA SATA 2 SATA 3

SR 75 MB/s 263 MB/s 492 MB/s

SW 17 MB/s 112 MB/s 299 MB/s

RR1 16 MB/s 25 MB/s 35 MB/s

RR32 18 MB/s 165 MB/s 192 MB/s

RW1 2.5 MB/s 78 MB/s 95 MB/s

RW32 2.5 MB/s 99 MB/s 246 MB/s

2008.12: Kingspec 2.5” 64GB PATA IDE SSD
2009. 7: Intel X25-M G2 80GB
2011. 3: OCZ Vertex 3 240GB SATA 3 SandForce SF-2281

Performance Improvement

9

Device Kingspec X25-M G2 OCZ Vertex 3

Interface PATA SATA 2 SATA 3

SR 75 MB/s 263 MB/s 492 MB/s

SW 17 MB/s 112 MB/s 299 MB/s

RR1 16 MB/s 25 MB/s 35 MB/s

RR32 18 MB/s 165 MB/s 192 MB/s

RW1 2.5 MB/s 78 MB/s 95 MB/s

RW32 2.5 MB/s 99 MB/s 246 MB/s

2008.12: Kingspec 2.5” 64GB PATA SSD
2009. 7: Intel X25-M G2 80GB
2011. 3: OCZ Vertex 3 240GB SATA 3 SandForce SF-2281

Not much improved!

!
"
#
$
%&
'
(
)$
*
+&
,
-
.
/

0*
+$
)&
1
-
.
/

2
3
4
&5
6
-
.
/

3
7
%8
(
9%
&6
:
,
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&1
-
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

0*
+$
)&
5
,
-
.
/

>
(
+%
97
+&
5
6
1
.
/

;
9*
<
8
+7
*
&6
:
,
.
/

;
9*
<
8
+7
*
&=
-
.
/

;
9*
<
8
+7
*
&=
-
.
/
&?
@
A
0B
&-
C

;
9*
<
8
+7
*
&5
6
1
.
/

2
3
4
&5
-
-
.
/

2
3
4
&5
-
-
.
/

3
%"
D
9(
)&
6
:
,
.
/

'
7
8
E
9F
(
&6
:
,
.
/

G
$
8
+$
%*
&B
9<
9+
(
)&
6
:
,
.
/

;
9*
<
8
+7
*
&H
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

3
7
%8
(
9%
&5
-
-
.
/

3
7
%8
(
9%
&5
6
1
.
/

>
(
+%
97
+&
5
6
1
.
/

2
3
4
&5
-
-
.
/

I
"
8
E
J
9*
&,
-
.
/

3
7
%8
(
9%
&5
6
-
.
/

A
B
A
'
A
&5
6
1
.
/

2
3
4
&5
6
-
.
/
&>
3
0K

>
(
+%
97
+&
5
-
-
.
/

2
3
4
&5
6
1
.
/
&L
!
/
&H
M-

.
M!
J
9))
&5
6
-
.
/

3
7
%8
(
9%
&=
-
.
/

2
3
4
&6
=
-
.
/
&>
3
0K

;
9*
<
8
+7
*
&5
6
1
.
/

4
(
)N
(
*
&5
6
1
.
/

;
9*
<
8
+7
*
&5
6
1
.
/
&L
!
/
&H
M-

!
(
N
8
"
*
<
&6
:
,
.
/

O
!
0&
H
-
-
.
/
&>
3
0K

@
"
*
3
7
%$
&5
6
-
.
/

2
3
4
&6
-
-
.
/

2
3
4
&6
=
-
.
/
&!
A
'
A
H

;
9*
<
8
+7
*
&5
6
1
.
/

>
)$
P
+7
%&
5
6
1
.
/
&!
A
'
A
H

0*
+$
)&
6
:
-
.
/

0*
+$
)&
6
:
-
.
/
&?
@
A
0B
&-
C

3
7
%8
(
9%
&5
6
1
.
/

3
7
%8
(
9%
&5
6
1
.
/
&?
@
A
0B
&-
C

!
$
(
<
(
+$
&:
-
-
.
/
&Q
6
-
-
@
>
I

G
B
&H
-
-
.
/
&5
-
;
&>
@
I

-

5--

6--

H--

=--

:--

,--

Q--

1--

R--

!$S"$*+9()&%$(T

!$S"$*+9()&U%9+$

Sequential Read (SR) & Write (SW)

10

MB/s

2009 2010 20112008 HDD

SSD average (SR): 282 MB/s
SSD average (SW): 177 MB/s
Seagate HDD (SR): 109 MB/s
Seagate HDD (SW): 103 MB/s

(Data from www.legitreview.com/articles/storage/)

http://www.legitreview.com/articles/storage/
http://www.legitreview.com/articles/storage/

!
"
#
$
%&
'
(
)$
*
+&
,
-
.
/

0*
+$
)&
1
-
.
/

2
3
4
&5
6
-
.
/

3
7
%8
(
9%
&6
:
,
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&1
-
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

0*
+$
)&
5
,
-
.
/

>
(
+%
97
+&
5
6
1
.
/

;
9*
<
8
+7
*
&6
:
,
.
/

;
9*
<
8
+7
*
&=
-
.
/

;
9*
<
8
+7
*
&=
-
.
/
&?
@
A
0B
&-
C

;
9*
<
8
+7
*
&5
6
1
.
/

2
3
4
&5
-
-
.
/

2
3
4
&5
-
-
.
/

3
%"
D
9(
)&
6
:
,
.
/

'
7
8
E
9F
(
&6
:
,
.
/

G
$
8
+$
%*
&B
9<
9+
(
)&
6
:
,
.
/

;
9*
<
8
+7
*
&H
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

3
7
%8
(
9%
&5
-
-
.
/

3
7
%8
(
9%
&5
6
1
.
/

>
(
+%
97
+&
5
6
1
.
/

2
3
4
&5
-
-
.
/

I
"
8
E
J
9*
&,
-
.
/

3
7
%8
(
9%
&5
6
-
.
/

A
B
A
'
A
&5
6
1
.
/

2
3
4
&5
6
-
.
/
&>
3
0K

>
(
+%
97
+&
5
-
-
.
/

2
3
4
&5
6
1
.
/
&L
!
/
&H
M-

.
M!
J
9))
&5
6
-
.
/

3
7
%8
(
9%
&=
-
.
/

2
3
4
&6
=
-
.
/
&>
3
0K

;
9*
<
8
+7
*
&5
6
1
.
/

4
(
)N
(
*
&5
6
1
.
/

;
9*
<
8
+7
*
&5
6
1
.
/
&L
!
/
&H
M-

!
(
N
8
"
*
<
&6
:
,
.
/

O
!
0&
H
-
-
.
/
&>
3
0K

@
"
*
3
7
%$
&5
6
-
.
/

2
3
4
&6
-
-
.
/

2
3
4
&6
=
-
.
/
&!
A
'
A
H

;
9*
<
8
+7
*
&5
6
1
.
/

>
)$
P
+7
%&
5
6
1
.
/
&!
A
'
A
H

0*
+$
)&
6
:
-
.
/

0*
+$
)&
6
:
-
.
/
&?
@
A
0B
&-
C

3
7
%8
(
9%
&5
6
1
.
/

3
7
%8
(
9%
&5
6
1
.
/
&?
@
A
0B
&-
C

!
$
(
<
(
+$
&:
-
-
.
/
&Q
6
-
-
@
>
I

G
B
&H
-
-
.
/
&5
-
;
&>
@
I

-

6-

=-

,-

1-

5--

56-

5=-

5,-

51-

6--

%(*R7N&S%9+$&=;/&?TBU5C

@(*R7N&S%9+$&=;/&?TBUH6C

Random Write (RW1 & RW32)

11

MB/s

2009 2010 20112008 HDD

SSD average (RW1): 48 MB/s
SSD average (RW32): 110 MB/s
Seagate HDD (RW1): 1.2 MB/s
Seagate HDD (RW32): 1.1 MB/s
Well-designed SSD (RW1): 80 MB/s
Well-designed SSD (RW32): >120 MB/s

(Data from www.legitreview.com/articles/storage/)

326 671 220 246

http://www.legitreview.com/articles/storage/
http://www.legitreview.com/articles/storage/

!
"
#
$
%&
'
(
)$
*
+&
,
-
.
/

0*
+$
)&
1
-
.
/

2
3
4
&5
6
-
.
/

3
7
%8
(
9%
&6
:
,
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&1
-
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

0*
+$
)&
5
,
-
.
/

>
(
+%
97
+&
5
6
1
.
/

;
9*
<
8
+7
*
&6
:
,
.
/

;
9*
<
8
+7
*
&=
-
.
/

;
9*
<
8
+7
*
&=
-
.
/
&?
@
A
0B
&-
C

;
9*
<
8
+7
*
&5
6
1
.
/

2
3
4
&5
-
-
.
/

2
3
4
&5
-
-
.
/

3
%"
D
9(
)&
6
:
,
.
/

'
7
8
E
9F
(
&6
:
,
.
/

G
$
8
+$
%*
&B
9<
9+
(
)&
6
:
,
.
/

;
9*
<
8
+7
*
&H
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

3
7
%8
(
9%
&5
-
-
.
/

3
7
%8
(
9%
&5
6
1
.
/

>
(
+%
97
+&
5
6
1
.
/

2
3
4
&5
-
-
.
/

I
"
8
E
J
9*
&,
-
.
/

3
7
%8
(
9%
&5
6
-
.
/

A
B
A
'
A
&5
6
1
.
/

2
3
4
&5
6
-
.
/
&>
3
0K

>
(
+%
97
+&
5
-
-
.
/

2
3
4
&5
6
1
.
/
&L
!
/
&H
M-

.
M!
J
9))
&5
6
-
.
/

3
7
%8
(
9%
&=
-
.
/

2
3
4
&6
=
-
.
/
&>
3
0K

;
9*
<
8
+7
*
&5
6
1
.
/

4
(
)N
(
*
&5
6
1
.
/

;
9*
<
8
+7
*
&5
6
1
.
/
&L
!
/
&H
M-

!
(
N
8
"
*
<
&6
:
,
.
/

O
!
0&
H
-
-
.
/
&>
3
0K

@
"
*
3
7
%$
&5
6
-
.
/

2
3
4
&6
-
-
.
/

2
3
4
&6
=
-
.
/
&!
A
'
A
H

;
9*
<
8
+7
*
&5
6
1
.
/

>
)$
P
+7
%&
5
6
1
.
/
&!
A
'
A
H

0*
+$
)&
6
:
-
.
/

0*
+$
)&
6
:
-
.
/
&?
@
A
0B
&-
C

3
7
%8
(
9%
&5
6
1
.
/

3
7
%8
(
9%
&5
6
1
.
/
&?
@
A
0B
&-
C

!
$
(
<
(
+$
&:
-
-
.
/
&Q
6
-
-
@
>
I

G
B
&H
-
-
.
/
&5
-
;
&>
@
I

-

6-

=-

,-

1-

5--

56-

5=-

5,-

51-

6--

@(*R7N&%$(R&=;/&?SBT5C

%(*R7N&%$(R&=;/&?SBTH6C

Random Read (RR1 & RR32)

12

MB/s

2009 2010 20112008 HDD
(Data from www.legitreview.com/articles/storage/)

SSD average (RR1): 23 MB/s
SSD average (RR32): 130 MB/s
Seagate HDD (RR1): 0.6 MB/s
Seagate HDD (RR32): 1.2 MB/s

237 382 686 235

http://www.legitreview.com/articles/storage/
http://www.legitreview.com/articles/storage/

!
"
#
$
%&
'
(
)$
*
+&
,
-
.
/

0*
+$
)&
1
-
.
/

2
3
4
&5
6
-
.
/

3
7
%8
(
9%
&6
:
,
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&1
-
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

2
3
4
&5
6
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

!
"
#
$
%&
'
(
)$
*
+&
,
=
.
/

0*
+$
)&
5
,
-
.
/

>
(
+%
97
+&
5
6
1
.
/

;
9*
<
8
+7
*
&6
:
,
.
/

;
9*
<
8
+7
*
&=
-
.
/

;
9*
<
8
+7
*
&=
-
.
/
&?
@
A
0B
&-
C

;
9*
<
8
+7
*
&5
6
1
.
/

2
3
4
&5
-
-
.
/

2
3
4
&5
-
-
.
/

3
%"
D
9(
)&
6
:
,
.
/

'
7
8
E
9F
(
&6
:
,
.
/

G
$
8
+$
%*
&B
9<
9+
(
)&
6
:
,
.
/

;
9*
<
8
+7
*
&H
-
.
/

;
9*
<
8
+7
*
&5
6
1
.
/

3
7
%8
(
9%
&5
-
-
.
/

3
7
%8
(
9%
&5
6
1
.
/

>
(
+%
97
+&
5
6
1
.
/

2
3
4
&5
-
-
.
/

I
"
8
E
J
9*
&,
-
.
/

3
7
%8
(
9%
&5
6
-
.
/

A
B
A
'
A
&5
6
1
.
/

2
3
4
&5
6
-
.
/
&>
3
0K

>
(
+%
97
+&
5
-
-
.
/

2
3
4
&5
6
1
.
/
&L
!
/
&H
M-

.
M!
J
9))
&5
6
-
.
/

3
7
%8
(
9%
&=
-
.
/

2
3
4
&6
=
-
.
/
&>
3
0K

;
9*
<
8
+7
*
&5
6
1
.
/

4
(
)N
(
*
&5
6
1
.
/

;
9*
<
8
+7
*
&5
6
1
.
/
&L
!
/
&H
M-

!
(
N
8
"
*
<
&6
:
,
.
/

O
!
0&
H
-
-
.
/
&>
3
0K

@
"
*
3
7
%$
&5
6
-
.
/

2
3
4
&6
-
-
.
/

2
3
4
&6
=
-
.
/
&!
A
'
A
H

;
9*
<
8
+7
*
&5
6
1
.
/

>
)$
P
+7
%&
5
6
1
.
/
&!
A
'
A
H

0*
+$
)&
6
:
-
.
/

0*
+$
)&
6
:
-
.
/
&?
@
A
0B
&-
C

3
7
%8
(
9%
&5
6
1
.
/

3
7
%8
(
9%
&5
6
1
.
/
&?
@
A
0B
&-
C

!
$
(
<
(
+$
&:
-
-
.
/
&Q
6
-
-
@
>
I

G
B
&H
-
-
.
/
&5
-
;
&>
@
I

-

6-

=-

,-

1-

5--

56-

5=-

5,-

51-

6--

@(*R7N&%$(R&=;/&?SBT5C

%(*R7N&%$(R&=;/&?SBTH6C

Random Read (RR1 & RR32)

13

MB/s

2009 2010 20112008 HDD
(Data from www.legitreview.com/articles/storage/)

237 382 686 235

Max: 35 MB/s

SSD average (RR1): 23 MB/s
SSD average (RR32): 130 MB/s
Seagate HDD (RR1): 0.6 MB/s
Seagate HDD (RR32): 1.2 MB/s

http://www.legitreview.com/articles/storage/
http://www.legitreview.com/articles/storage/

RR1 Performance

 Much faster than HDDs
 Seagate 7200RPM HDD: 0.6MB/s
 Intel X25-M G2: 25MB/s (40x)

 Depend on single-chip performance
 Improving I/O interface speed

 ONFI 1.0 -> ONFI 2.0 -> ONFI 3.0
 SATA2 -> SATA3 -> PCIE -> ??

 Improving page load time
 Speed: 2bit/cell -> 1bit/cell
 Capacity: 2bit/cell -> 3bit/cell

14

Random Read Workloads

 High I/O concurrency (RR32)
 Multiple independent I/O streams
 Multi-user systems
 Web server workload, database applications, etc.

 Low I/O concurrency (RR1)
 Single user systems
 OS booting, application launch, game loading, etc.

 Demand paging
 Important metric for personal computing systems

15

Example: Application Launch

 CPU & SSD usage
 Only one core active during the most time periods
 SSD mostly idle when one or more CPU cores are active

16

SSD

(Application: Eclipse, OS: Linux)
0 1 2 3 4 5

time (sec)

CPU core 1
CPU core 2
CPU core 3
CPU core 4
CPU core 5

Core 1

Core 2
Core 3
Core 4
Core 5

Core 1

Core 2
Core 3
Core 4
Core 5

Core 1

Core 2
Core 3
Core 4
Core 5

SSD

Example: Application Launch

 SSD queue depth
 Average QD: 0.3

17

(QD)

(sec)

(Application: Eclipse, OS: Linux)

Improving RR1 Performance

 Two-phase prefetcher
 Resolving metadata dependency for higher QD
 “Exploiting SSD parallelism to accelerate application launch on

SSDs,” IET Electronics Letters, 2011.
 FAST: Fast Application STarter

 Overlapping CPU computation and SSD access time
 “FAST: Quick Application Launch on Solid-State Drives,” in Proc.

USENIX FAST, 2011.

18

Two-Phase Prefetcher

 Resolving metadata dependency

19

mi: metadata block, di: normal data block

FAST: Quick Application Launch on Solid-State Drives
Yongsoo Joo1, Junhee Ryu2, Sangsoo Park1, and Kang G. Shin1,3

1Ewha Womans Univ., Korea 2Seoul National Univ., Korea 3University of Michigan, USA

!
"
"
#
$
$

!
"
%&
'
(
)*
%#
(
+
#
%

,
#
$
-.
/
#
%0
1
)2

3
"
4-
5
$
#

3
6
"
#
4

7
08
5
&
)

7
-%
#
9&
6

:
-;
5

:
/
&
;
#

<
&
=
+
-/
-

>
+
#
?
+
#
$
-.
/
#
%

>
+
#
?
#
4&
5

>
&
/
@
=
#
%&
%

A
(
'
?
-#
B

C
(
)4
(
'

D
5
#
/
D
99
-"
#

E
&
B
#
%5
&
-/
)

8
F
G
5
#

H
I
=
/
+
#
%'
-%
+

J
-$
-&

K
&
%+

L
-4
-/
6
M8
3

!
?
#
%(
.
#

NONP

QNONP

2NONP

RNONP

SNONP

TNNONP

TQNONP

UDA,

8DVH

7!8H

K!VC

EV37

WDXY,

1.6s 0.8s 1.9s 4.8s 2.1s 1.1s 0.9s 2.3s 2.6s 5.6s 1.8s 1.6s 1.2s 2.7s 5.1s 0.9s 1.9s 1.0s 1.0s 3.7s 2.6s 6.6s 93%
72%

63%
27%

tcold
tsorted
tFAST
twarm
tssd
tbound

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

SSD
CPU

SSD
CPU

SSD
CPU

SSD
CPU

SSD
CPU

SSD
CPU

SSD
CPU

SSD
CPU

Application: Eclipse

Application: Firefox

0 5

0 1

(sec)

(sec)

Cold
start

Warm
start

FAST

Sorted
prefetch

Cold
start

Warm
start

FAST

Sorted
prefetch

Low CPU usage

(a)

(b)

(c)

1 2 3 4

(a) Cold start (no prefetcher)

(b) Baseline prefetcher (c) Baseline prefetcher (zoomed in)

(d) Two-phase prefetcher (e) Two-phase prefetcher (zoomed in)

0

32
24
16

8
0

1 2 3 4

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3

5

0 1 2 3 4 5

0 1 2 3 4 5

Average QD: 0.3

Average QD: 3.4

Average QD: 30.6

CPU & SSD Usage

Improvement

Application launch time reduction: 28% (min: 16%, max: 46%)

Idea 2: Exploiting SSD Parallelism

Measured Queue Depth

Improvement

Prefetcher execution time reduction: 37%

Application launch time reduction: 18%

m1 d1 d2 d3 m4 d4 d5
c1 c2 c3 c4

m4 d4
d5
m1

d2
d1
d3

c1 c2 c3 c4 c5

c5

m4 d4
d5
d2

m1

d1
d3

c1 c2 c3 c4 c5

(a) No prefetcher

(b) Baseline prefetcher

(c) Two-phase prefetcher

1
2

1
2
3

1
2
3
4
5

Prefetcher
execution

Launch completion

Q
D

CPU
SSD

CPU
SSD

CPU
SSD

Time

Time

Time

Prefetcher
execution

First
phase

Second
phase

Q
D

Q
D

0

0

0

s1 s2 s3 s4

c1 c2 c3 c4

s1 s2 s3 s4c1 c2 c3 c4

Application

Prefetcher

Application

Time

Time

Time

(a) Cold start scenario

(c) Proposed prefetching ()

c1 c2 c3 c4Application

Time
(b) Warm start scenario

tcpu > tssd

tlaunch

tlaunch

tlaunch

Idea 1: Overlapping SSD Accesses

/dev/sda

A B

C D

inode

cached
blocks

a.conf b.so c.lib

C A B D

Block-to-File Level Conversion

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"
LBA

File
offset

"a.conf" "b.so" "c.lib"

Page cache

int main(void) {
! fd = open("/dev/sda", O_RDONLY|O_LARGEFILE);
! posix_fadvise(fd, 5, 2, POSIX_FADV_WILLNEED);
! posix_fadvise(fd, 1, 1, POSIX_FADV_WILLNEED);
! posix_fadvise(fd, 7, 1, POSIX_FADV_WILLNEED);
! return 0;
}

LBA Size

SSD

Sequence C DA B

int main(void) {

! fd1 = open("b.so", O_RDONLY);

! posix_fadvise(fd1, 2, 2, POSIX_FADV_WILLNEED);

! fd2 = open("a.conf", O_RDONLY);

! posix_fadvise(fd2, 1, 1, POSIX_FADV_WILLNEED);

! fd3 = open("c.lib", O_RDONLY);

! posix_fadvise(fd3, 0, 1, POSIX_FADV_WILLNEED);

! return 0;

} file offset size

Block-level
Replay

File-level
Replay

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DP

CDP

0DP

QDP

RDP

SDDP

T&2<U$)(%)

V($#2+-#

JA&.3K($#

M(%9U$)(%)

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DP

CDP

0DP

QDP

RDP

SDDP

V($#2+-#

JA&.3K($#

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DP

CDP

0DP

QDP

RDP

SDDP

T&2<U$)(%)

V($#2+-#

JA&.3K($#

M(%9U$)(%)

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DP

CDP

0DP

QDP

RDP

SDDP

V($#2+-#

JA&.3K($#

(a) Prefetcher execution time

(b) Application launch time

0
.6

4
s

0
.2

4
s

0
.5

6
s

0
.6

6
s

0
.9

0
s

0
.2

5
s

0
.3

1
s

0
.2

9
s

0
.2

8
s

1
.0

2
s

0
.3

7
s

0
.4

0
s

0
.3

7
s

0
.4

6
s

0
.7

8
s

0
.3

7
s

0
.7

1
s

0
.2

4
s

0
.3

1
s

0
.9

5
s

0
.9

6
s

1
.0

2
s

63%

1
.6

s

0
.7

s

1
.8

s

4
.6

s

2
.0

s

1
.1

s

0
.8

s

2
.1

s

2
.1

s

5
.4

s

1
.8

s

1
.5

s

1
.2

s

2
.4

s

5
.0

s

0
.9

s

1
.8

s

0
.9

s

0
.9

s

3
.4

s

2
.5

s

5
.0

s

100%

100%

91%

82%

63%

Application: Eclipse
x-axis: time (seconds)
y-axis: queue depth

Two-Phase Prefetcher

20

(a) Cold start (no prefetcher)

(b) Baseline prefetcher (c) Baseline prefetcher (zoomed in)

(d) Two-phase prefetcher (e) Two-phase prefetcher (zoomed in)

0

32
24
16

8
0

1 2 3 4

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3

5

0 1 2 3 4 5

0 1 2 3 4 5

Average QD: 0.3

Average QD: 3.4

Average QD: 30.6

(Application: Eclipse, OS: Linux)

QD

QD

QD

QD

QD

Two-Phase Prefetcher

 Prefetcher time
 37% reduction

 Launch time
 18% reduction

21

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DPDQ

CDPDQ

0DPDQ

RDPDQ

SDPDQ

TDDPDQ

U($#2+-#

JA&.3K($#

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DPDQ

CDPDQ

0DPDQ

RDPDQ

SDPDQ

TDDPDQ

V&2<W$)(%)

U($#2+-#

JA&.3K($#

M(%9W$)(%)

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DPDQ

CDPDQ

0DPDQ

RDPDQ

SDPDQ

TDDPDQ

U($#2+-#

JA&.3K($#

!
"
"
#
$
$

!
"
%&
'
(
)

*
#
$
+,
-
#
%.
/
)0

1
"
2+3
$
#

1
4
"
#
2

5
.6
3
&
)

5
+%
#
7&
4

8
+9
3

8
-
&
9
#

:
&
;
<
+-
+

=
<
#
>
<
#
$
+,
-
#
%

=
<
#
>
#
2&
3

=
&
-
?
;
#
%&
%

@
(
'
>
+#
A

B
(
)2
(
'
C
D
D
E
'

F
3
#
-
F
77
+"
#

G
&
A
#
%3
&
+-
)

6
H
I
3
#

J
K
;
-
<
#
%'
+%
<

L
+$
+&

M
&
%<

N
+2+
-
4
O6
1

!
>
#
%(
,
#

DPDQ

CDPDQ

0DPDQ

RDPDQ

SDPDQ

TDDPDQ

V&2<W$)(%)

U($#2+-#

JA&.3K($#

M(%9W$)(%)

(a) Prefetcher execution time

(b) Application launch time

0
.6

4
s

0
.2

4
s

0
.5

6
s

0
.6

6
s

0
.9

0
s

0
.2

5
s

0
.3

1
s

0
.2

9
s

0
.2

8
s

1
.0

2
s

0
.3

7
s

0
.4

0
s

0
.3

7
s

0
.4

6
s

0
.7

8
s

0
.3

7
s

0
.7

1
s

0
.2

4
s

0
.3

1
s

0
.9

5
s

0
.9

6
s

1
.0

2
s

63%

1
.6

s

0
.7

s

1
.8

s

4
.6

s

2
.0

s

1
.1

s

0
.8

s

2
.1

s

2
.1

s

5
.4

s

1
.8

s

1
.5

s

1
.2

s

2
.4

s

5
.0

s

0
.9

s

1
.8

s

0
.9

s

0
.9

s

3
.4

s

2
.5

s

5
.0

s

100%

100%

91%

82%

63%

FAST: Fast Application STarter

 Overlap CPU computation with SSD accesses

22

0

0

0

s1 s2 s3 s4

c1 c2 c3 c4

s1 s2 s3 s4c1 c2 c3 c4

Application

Prefetcher

Application

Time

Time

Time

(a) Cold start scenario

(c) Proposed prefetching ()

c1 c2 c3 c4Application

Time
(b) Warm start scenario

tcpu > tssd

tlaunch

tlaunch

tlaunch

CPU and SSD Usage

23

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

Eclipse

Firefox

0 5

0 1

(sec)

(sec)

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

Cold

start

Warm

start

FAST

Sorted

prefetch

Cold

start

Warm

start

FAST

Sorted

prefetch

Low CPU usage

(a)
(b)

(c)

1 2 3 4

Reduction:
24%

Reduction:
37%

Measured Application Launch Time

 Launch time reduction
 Warm start: 37% (upper bound)
 FAST: 28% (min: 16%, max: 46%)

24

(Normalized to the cold start time.)

!
"
"
#
$
$

!
"
%&
'
(
)*
%#
(
+
#
%

,
#
$
-.
/
#
%0
1
)2

3
"
4-
5
$
#

3
6
"
#
4

7
08
5
&
)

7
-%
#
9&
6

:
-;
5

:
/
&
;
#

<
&
=
+
-/
-

>
+
#
?
+
#
$
-.
/
#
%

>
+
#
?
#
4&
5

>
&
/
@
=
#
%&
%

A
(
'
?
-#
B

C
(
)4
(
'

D
5
#
/
D
99
-"
#

E
&
B
#
%5
&
-/
)

8
F
G
5
#

H
I
=
/
+
#
%'
-%
+

J
-$
-&

K
&
%+

L
-4
-/
6
M8
3

!
?
#
%(
.
#

NONP

QNONP

2NONP

RNONP

SNONP

TNNONP

TQNONP

UDA,

8DVH

7!8H

K!VC

EV37

WDXY,

1.6s 0.8s 1.9s 4.8s 2.1s 1.1s 0.9s 2.3s 2.6s 5.6s 1.8s 1.6s 1.2s 2.7s 5.1s 0.9s 1.9s 1.0s 1.0s 3.7s 2.6s 6.6s 93%

72%

63%

27%

tcold

tsorted
tFAST

twarm
tssd

tbound

I/O Sequence Determinism

 Non-sequential I/O streams repeatedly occur
 M. Bhadkamkar et al., “BORG: Block-reORGanization for Self-

optimizing Storage Systems,” in Proc. USENIX FAST, 2009.

25

184 7th USENIX Conference on File and Storage Technologies USENIX Association

Workload File System Memory Reads [GB] Writes [GB] File System Top 20% Partial
type size [GB] size [GB] Total Unique Total Unique accessed data access determinism
office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 % 65.42 %
developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 % 61.56 %
SVN server 2.39 0.5 0.29 0.17 0.62 0.18 14.60 % 45.79 % 50.73 %
web server 169.54 0.5 21.07 7.32 2.24 0.33 4.51 % 59.50 % 15.55 %

Table 1: Summary statistics of week-long traces obtained from four different systems.

rameter choice which can lead to even greater improve-
ments or degrade performance in the worst case; a self-
configuring BORG is certainly a logical and feasible di-
rection. Memory overheads of BORG are bound within
0.25% of BOPT, but CPU overheads are higher. Fortu-
nately, most processing can be done in the background
and there is ample room for improvement.

This paper makes the following contributions: (i) we
study the characteristics of I/O workloads and show how
the findings motivate BORG (2) , (ii) we motivate and
present the detailed design and the first implementation
of a disk data re-organizing system that adapts itself to
changes in the I/O workload (3 and 4), (iii) we present
the challenges faced in building such a system and our
solutions to it (5), and (iv) we evaluate the system to
quantify its merits and weaknesses (6).

2 Characteristics of I/O Workloads
In this section, we investigate the characteristics of mod-
ern I/O workloads, specifically elaborating on those that
directly motivate BORG. We collected I/O traces, down-
stream of an active page cache, over a one-week pe-
riod from four different machines. These machines have
different I/O workloads, including office and developer
desktop workloads, a version control SVN (Subversion)
server, and a web-server. The office and developer
workloads are single-user workloads. The former work-
load was composed mostly of web-browsing, graph plot-
ting with gnuplot, and several open-office applications,
while the latter consisted of extensive development us-
ing emacs, gcc, and gdb, document preparation using
LATEX, email, web-browsing, and updates of the oper-
ating system. The SVN server hosted document and
project code-base repositories for our 6-person research
group. Finally, the web-server workload mirrored the
web-requests made to our department’s production web-
server on one of our lab machines and served 1.1 million
web requests during the trace period. Key statistics for
these workloads are summarized in Table 1. We define
the on-disk working-set (henceforth also referred to sim-
ply as “working-set”) of an I/O workload as the set of all
unique blocks accessed in a given interval.

2.1 Non-uniform Access Frequency Distribution
Researchers have pointed out that file system data have
non-uniform access frequency distribution [2, 29, 39].

This was confirmed in the traces that we collected where
less than 4.5-22.3% of the file system data were accessed
over the duration of an entire week (shown in Table 1).
We observe that the office and web server workloads are
read mostly, while the developer and SVN server are
write mostly. Figure 1 (top row) shows page access rank-
frequency plots for the workloads; file system pages were
4KB in size, composed of 8 contiguous blocks. A uni-
form trend to be observed across the various workloads
is that the really high frequency accesses are due write
requests. However, and especially in the case of the read-
mostly office and web server workloads, there are a large
number of read requests that occur repeatedly. In either
case (read or write), the access frequencies are highly
skewed. Figure 1 (middle row) depicts disk heatmaps
created by partitioning the disk into regions and mea-
suring accesses to each region. The heatmaps indicate
that accesses, both high and low frequency ones, in most
cases are spread over the entire disk area. Skewed data
access frequency is further illustrated in Table 1 – the
top 20% most frequently accessed blocks contributed to a
substantially large (45-66%) percentage of the total ac-
cesses across the workloads, which are within the ranges
reported by Gómez and Santonja (Figure 2(a) in [7]) for
the Cello traces they examined.

Based on the above observations, it is reasonable to ex-
pect that co-locating frequently accessed data in a small
area of the disk would help reduce seek times when com-
pared to the same data being spread throughout the entire
disk area. Akyurek and Salem [2] have demonstrated the
performance benefits of such an optimization via a sim-
ulation study. This observation also motivates reorganiz-
ing copies of popular blocks in BORG.

2.2 Temporal Locality

Temporal locality in I/O workloads is observed when the
on-disk working-sets remain mostly static over short du-
rations. Here, we refer to a locality of hours, days, or
weeks, rather than seconds or minutes (typical of main
memory accesses). For instance, a developer may work
on a few projects over a period of a few weeks or months,
typically resulting in her daily or weekly working sets
being substantially smaller than her entire disk size. In
servers, popularity of client requests result in temporal
locality. A web server’s top-level links tend to be ac-
cessed more frequently than content that is embedded

Application Launch Sequence

26

 Deterministic block requests over repeated launches
 Raw block request traces

 Application launch sequence

b1 b2 b3 b4 b5

b4 b5

...

b3 b4 b5

b1 b2 b3

b1 b2

b1 b2 b3 b4 b5

Unrelated to application launch
Block requests irrelevant
to the application launch

Smart SSD Controller

 Motivation
 Integrate the optimization schemes into the SSD

 Smart SSD controller
 Doing something more than just processing the received

I/O requests
 Something=intelligence functions

 ex) Two-phase prefetcher, FAST

 Necessary components
 Microprocessor and buffer memory
 Already available in SSDs

27

Physical View

28

Figure source: Nitin Agrawal et al., “Design Tradeoffs for SSD Performance,” in Proc. USENIX ATC, 2008.

!"#$
%&$'()*+'
,"-.+

/0))'(
1*&*-'(

2("+'##"(
34*#5
6'708
9108

34*#5
2:-

!"#$

%&$'(+"&&'+$

;<1

!!" #$%&'$(()'
34*#5
2:-

34*#5
2:-

34*#5
2:-

Figure 3: SSD Logic Components

address to physical flash location. The processor, buffer-
manager, and multiplexer are typically implemented in a
discrete component such as an ASIC or FPGA, and data
flow between these logic elements is very fast. The pro-
cessor, and its associated RAM, may be integrated, as
is the case for simple USB flash-stick devices, or stan-
dalone as for designs with more substantial processing
and memory requirements.
As described in Section 2, flash packages export an

8-bit wide serial data interface with a similar number of
control pins. A 32GB SSD with 8 of the Samsung parts
would require 136 pins at the flash controller(s) just for
the flash components. With such a device, it might be
possible to achieve full interconnection between the flash
controller(s) and flash packages, but for larger configura-
tions this is not likely to remain feasible. For the mo-
ment, we assume full interconnection between data path,
control logic, and flash. We return to the issue of inter-
connect density in Section 3.3.
This paper is primarily concerned with the organiza-

tion of the flash array and the algorithms needed to man-
age mappings between logical disk and physical flash ad-
dresses. It is beyond the scope of this paper to tackle the
many important issues surrounding the design and layout
of SSD logic components.

3.1 Logical Block Map
As pointed out by Birrell et al. [2], the nature of NAND
flash dictates that writes cannot be performed in place as
on a rotating disk. Moreover, to achieve acceptable per-
formance, writes must be performed sequentially when-
ever possible, as in a log. Since each write of a single
logical-disk block address (LBA) corresponds to a write
of a different flash page, even the simplest SSD must
maintain some form of mapping between logical block
address and physical flash location. We assume that the

logical block map is held in volatile memory and recon-
structed from stable storage at startup time.
We frame the discussion of logical block maps us-

ing the abstraction of an allocation pool to think about
how an SSD allocates flash blocks to service write re-
quests. When handling a write request, each target log-
ical page (4KB) is allocated from a pre-determined pool
of flash memory. The scope of an allocation pool might
be as small as a flash plane or as large as multiple flash
packages. When considering the properties of allocation
pools, the following variables come to mind.

• Static map. A portion of each LBA constitutes a
fixed mapping to a specific allocation pool.

• Dynamic map. The non-static portion of a LBA is
the lookup key for a mapping within a pool.

• Logical page size. The size for the referent of a
mapping entry might be as large as a flash block
(256KB), or as small as a quarter-page (1KB) .

• Page span. A logical page might span related pages
on different flash packages thus creating the poten-
tial for accessing sections of the page in parallel.

These variables are then bound by three constraints:

• Load balancing. Optimally, I/O operations should
be evenly balanced between allocation pools.

• Parallel access. The assignment of LBAs to phys-
ical addresses should interfere as little as possible
with the ability to access those LBAs in parallel. So,
for example if LBA0..LBAn are always accessed at
the same time, they should not be stored on a com-
ponent that requires each to be accessed in series.

• Block erasure. Flash pages cannot be re-written
without first being erased. Only fixed-size blocks of
contiguous pages can be erased.

Physical View

29

Figure source: Nitin Agrawal et al., “Design Tradeoffs for SSD Performance,” in Proc. USENIX ATC, 2008.

!"#$
%&$'()*+'
,"-.+

/0))'(
1*&*-'(

2("+'##"(
34*#5
6'708
9108

34*#5
2:-

!"#$

%&$'(+"&&'+$

;<1

!!" #$%&'$(()'
34*#5
2:-

34*#5
2:-

34*#5
2:-

Figure 3: SSD Logic Components

address to physical flash location. The processor, buffer-
manager, and multiplexer are typically implemented in a
discrete component such as an ASIC or FPGA, and data
flow between these logic elements is very fast. The pro-
cessor, and its associated RAM, may be integrated, as
is the case for simple USB flash-stick devices, or stan-
dalone as for designs with more substantial processing
and memory requirements.
As described in Section 2, flash packages export an

8-bit wide serial data interface with a similar number of
control pins. A 32GB SSD with 8 of the Samsung parts
would require 136 pins at the flash controller(s) just for
the flash components. With such a device, it might be
possible to achieve full interconnection between the flash
controller(s) and flash packages, but for larger configura-
tions this is not likely to remain feasible. For the mo-
ment, we assume full interconnection between data path,
control logic, and flash. We return to the issue of inter-
connect density in Section 3.3.
This paper is primarily concerned with the organiza-

tion of the flash array and the algorithms needed to man-
age mappings between logical disk and physical flash ad-
dresses. It is beyond the scope of this paper to tackle the
many important issues surrounding the design and layout
of SSD logic components.

3.1 Logical Block Map
As pointed out by Birrell et al. [2], the nature of NAND
flash dictates that writes cannot be performed in place as
on a rotating disk. Moreover, to achieve acceptable per-
formance, writes must be performed sequentially when-
ever possible, as in a log. Since each write of a single
logical-disk block address (LBA) corresponds to a write
of a different flash page, even the simplest SSD must
maintain some form of mapping between logical block
address and physical flash location. We assume that the

logical block map is held in volatile memory and recon-
structed from stable storage at startup time.
We frame the discussion of logical block maps us-

ing the abstraction of an allocation pool to think about
how an SSD allocates flash blocks to service write re-
quests. When handling a write request, each target log-
ical page (4KB) is allocated from a pre-determined pool
of flash memory. The scope of an allocation pool might
be as small as a flash plane or as large as multiple flash
packages. When considering the properties of allocation
pools, the following variables come to mind.

• Static map. A portion of each LBA constitutes a
fixed mapping to a specific allocation pool.

• Dynamic map. The non-static portion of a LBA is
the lookup key for a mapping within a pool.

• Logical page size. The size for the referent of a
mapping entry might be as large as a flash block
(256KB), or as small as a quarter-page (1KB) .

• Page span. A logical page might span related pages
on different flash packages thus creating the poten-
tial for accessing sections of the page in parallel.

These variables are then bound by three constraints:

• Load balancing. Optimally, I/O operations should
be evenly balanced between allocation pools.

• Parallel access. The assignment of LBAs to phys-
ical addresses should interfere as little as possible
with the ability to access those LBAs in parallel. So,
for example if LBA0..LBAn are always accessed at
the same time, they should not be stored on a com-
ponent that requires each to be accessed in series.

• Block erasure. Flash pages cannot be re-written
without first being erased. Only fixed-size blocks of
contiguous pages can be erased.

Intelligence functions
share the existing
processor and RAM of
the SSD controller

Logical View

30

• I/O pattern analysis
• Prefetching
• Prefetch hit ratio
monitoring

SSD as a black box

I/O interface

Intelligence function

• No modification
necessary

Advantages

 Easiness in monitoring block I/Os
 OS independence
 No metadata dependency
 Immediate deployment

 cf. Seagate hybrid HDD (Momentus XT)

31

Design Consideration

 Buffer management
 Limited buffer memory capacity
 Caching vs. prefetching

 Queue depth control
 Maximum queue depth can be harmful

 Data transfer delay
 From the SSD buffer to the main memory page cache

32

33

Q&A

