A PRAM and NAND Flash Hybrid Architecture for High-Performance Embedded Storage Subsystems

SAMSU

Chul Lee Software Laboratory Samsung Advanced Institute of Technology Samsung Electronics

Outline

- Background
- \cdot Motivation
- Our methods
 1.File System Metadata Separation
 2.Hybrid FTL
- Evaluation
- \cdot Conclusion

Target System

RAM

CPU CPU Meta data Code + Meta Data Working Code Working User data User data Storage RAM Storage Storage Storage M-SDRAM NOR NAND M-SDRAM PRAM NAND Code XIP Code XIP **Conventional architecture** PRAM+NAND hybrid architecture niche PRAM NAND - High Density - No Erase Op. - Byte Accessible -Low Cost - High Performance Synergy Effects High Performance, Low cost NAND based **Storage Solution** (High Performance MLC NAND based Storage System)

Characteristics of NVRAM (PRAM) 4

- Flash memory device
 - Erase before program
 - Different granularity on erase and program operations
 - Limited life time
 - High Density (NAND)
- NVRAM
 - Fast read/write
 - Byte operation (random access)
 - No erase operation
 - Capacity (cost) problem

PRAM vs. NAND

SAMSUNG

Features	PRAM	NAND(MLC)	NAND(SLC)
Interface	Byte Access	Page Access	Page Access
	No erase op	Need for Erase	Need for Erase
Endurance	1 M	10K	100K
Density	512M bit	128 G bit	64G bit
Access time	Async: 80ns	60us(page)	20us(page)
	Sync: 10ns	Serial access:30ns	Serial access:25ns
Word Program Time	10us (word)	800us(page)	200us(page)
Block Erase Time	N/A	1.4ms	1.4ms

PRAM vs. NAND

	PRAM	NAND
Strength	 Byte access XIP No erase/in-place update Low latency Endurance 	 Large capacity Write endurance Fast Seq. I/O
Weakness	 Density Seq. Write speed 	 Erase op. FTL Wear-Leveling Garbage-collection Page/block access

Related Work

SAMSUNG

	Arch.	Based on	NVRAM Usage	NVRAM Mgmt.	Disk(NAND) Usage	Reliability	Year
HeRMES	MRAM + Disk		Compressed Metadata Write buffer				2001
Conquest	BBDRAM + Disk	FFS-like	Metadata Small File data Shared Library	Slab/Zone/ Page allocator	Large File data	Soft update Consistency checker	2002
MRAMFS	MRAM only		Compressed Metadata				2004
Greenan et. al,	MRAM + Disk	LiFS	Metadata	MRAM allocator	File data	Online consistency checker EVENODD(ECC) MMU Page protection (H/W)	2006
PRIMS	MRAM + Disk	LiFS	Metadata	MRAM allocator	File data	Online consistency checker EVENODD(ECC) Erasure-encoded Log- structure (S/W)	2007
FRASH	FRAM + NAND	YAFFS	Metadata (replication)	RAW	Metadata File data		2007
MINVFS	FRAM + NAND	YAFFS	Metadata	BGET Memory allocator	File data		2007
PFFS	PRAM + NAND	FFS-like	Metadata	RAW	File data		2008

Metadata trickle down to PRAM

Approach in File System Level

FSMS (File System Metadata Separation)

SAMSUNG

File System Metadata Separation (FSMS) 11

- Separate File System Meta data [FAT,DIR,Log] from NAND Flash
 - Store FS Metadata on PRAM \rightarrow Decrease random access to FTL
 - Only the user data will be stored on NAND flash
 - Random Access decrement -> FTL overhead decrease -> Performance and life span of NAND flash increase

Selective Programming

- Selectively programming programs only the modified words among metadata block.
 - On average, only 16 % of one metadata block is changed

SAMSUNG

Approach in Block Device Level

hFTL (PRAM+NAND hybrid storage FTL)

Implementation of hybrid FTL

• PRAM, NAND Layout

- No scanning is required.

Implementation of hybrid FTL

SAMSUNG

Evaluation

- Workload
 - Synthesized seq./ran. workloads
 - IOzone
- Metrics
 - Throughputs
 - Erase counts for life span
 - DRAM requirement for the implementation cost
- Comparison
 - 1. Log block FTL (LBFTL)
 - 2. LBFTL + FSMS,
 - 3. hFTL,
 - 4. hFTL+FSMS

Environment

CPU	S3C2413, 200MHz
PRAM	64MB (KPS1215EZM)
NAND	1GB MLC (K9G8G08U0M)
FS/OS	TFS4/Nucleus RTOS

LLD, FTL-Level Evaluation

- LLD (Low Level Device driver)
 - Read: 4.25MB/s, Write 1.7MB/s
 - FTL
 - Sequential Read: 4.16MB/s (LB-FTL, hFTL Similar)

SAMSUNG

17

- Random Read: 4.09MB/s (LB-FTL, hFTL Similar)
- Sequential Write: 1.62MB/s (LB-FTL, hFTL Similar)
- Random Write :

File System Level Evaluations

IOzone benchmark for Sequential I/O

- LBFTL - LBFTL+FSMS - A-hFTL - hFTL+FSMS

SAMSUNG

18

File System Level Evaluations

• IOzone benchmark for Random I/O

- LBFTL - LBFTL+FSMS - A-hFTL- hFTL+FSMS

SAMSUNG

Life Span and Implementation Cost 20

Implementation Cost

Required PRAM for 1GB NAND: For FSMS : 2 MB For hFTL : 2.5 MB

Conclusion

- Industrial assumption/viewpoint
 - Embedded systems are mostly handsets and digital gadgets.
 - Storage systems should be FAT-compatible.
- \cdot Contributions
 - Two heterogeneous storage memories, PRAM and NAND flash, are combined in a synergetic way.
 - Our two schemes have the metadata trickled down to PRAM instead of NAND.
 - FSMS: The hybrid block device driver locates filesystem's metadata in PRAM
 - hFTL: The hybrid FTL locates all the FTL-related metadata in PRAM. It enabled full-page mapping.
- Further work
 - Scalability for large NAND flash storage
 - PRAM Reliability

References

Sлм	SU	NG
		22

HeRMES	Miller, E.L. Brandt, S.A. Long, D.D.E. "HeRMES: high-performance reliable MRAM-enabled storage" Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on Publication Date: 20-22 May 2001
Conquest	Wang, A. A., Kuenning, G., Reiher, P., and Popek, G. 2006. The Conquest file system: Better performance through a disk/persistent-RAM hybrid design. Trans. Storage 2, 3 (Aug. 2006), 309-348.
MRAMFS	Nathan K.Edel, Deepa Tuteja, Ethan L.Miller, Scott A.Brandt, MRAMFS: A compressing file system for non-volatile RAM, Preceedings of the The IEEE Computer Society's 12 th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'04)
Greenan et. al,	Kevin Greenan, Ethan L. Miller, Reliability Mechanisms for File Systems Using Non-Volatile Memory as a Metadata Store, Proceedings of the 6th ACM & IEEE Conference on Embedded Software (EMSOFT '06), October 2006, pages 178-187
PRIMS	Greenan, K. M. and Miller, E. L. 2007. PRIMS: making NVRAM suitable for extremely reliable storage. In Proceedings of the 3rd Workshop on on Hot Topics in System Dependability (Edinburgh, UK). USENIX Association, Berkeley, CA, 10
FRASH	Eun-ki Kim, Hyungjong Shin, Byung-gil Jeon, Seokhee Han, Jaemin Jung and Youjip Won, "FRASH: Hierarchical File System for FRAM and Flash," In proceedings of International Workshop on Data Storage Device and Systems, Aug. 2007
MiNVFS	Doh, I. H., Choi, J., Lee, D., and Noh, S. H. 2007. Exploiting non-volatile RAM to enhance flash file system performance. In Proceedings of the 7th ACM &Amp IEEE international Conference on Embedded Software (Salzburg, Austria, September 30 - October 03, 2007). EMSOFT '07
PFFS	Park, Y., Lim, S., Lee, C., and Park, K. H. 2008. PFFS: a scalable flash memory file system for the hybrid architecture of phase-change RAM and NAND flash. In Proceedings of the 2008 ACM Symposium on Applied Computing (Fortaleza, Ceara, Brazil, March 16 - 20, 2008). SAC '08

Logical Delete

• Functionality of "Logical Delete"

