
1

File Systems for
Storage Class Memory

David Pease, IBM Almaden Research Center (pease@almaden.ibm.com)
Darrell Long, U. C. Santa Cruz (darrell@cs.ucsc.edu)

mailto:pease@almaden.ibm.com

2

When Storage Class Memories become available,
they will drive profound changes in file system
architecture and implementation.

We explore ideas on how file systems could change to
support such storage.

3

File Systems Overview

 Modern file systems come in many types:

 Local, distributed, cluster
 General purpose vs. special-purpose

 Yet they provide many of same capabilities and services :

 Consistent programming API
 e.g., POSIX, Windows NT APIs

 Name space
 Way to name, organize, refer to files/data sets

- Directory-based, tree-structured (Unix, Windows, Mac)
- Essentially flat (zOS)

4

File Systems Overview (cont.)

 In-memory Caching

 Done for two complementary reasons, both related to the
disparity in memory vs. disk access time:

 For input operations, data is cached in the hope it will be
read in the future
- May have been read or written earlier, may be prefetched

 For output operations, data is cached to isolate application
from slow external device write speeds
- Data is cached, control is returned, flushed to disk later

- Can be problematic: system failure can lead to lost or
 inconsistent data

 Both are problematic when data is shared across systems
- Complex, often slow or error-prone locking techniques

5

File Systems Overview (cont.)

 Often tightly tied to Virtual Memory system of the OS

 Allows features like memory-mapped file I/O

 But can be very complex
- Windows file system/VMM interface very difficult

 Finally, I/O device access

 Could be very simple:

 Convert file offset to block address, call device driver

 But typically is not:

 Must deal with error conditions
 May involve read-modify-write, network access, multiple

device accesses, parity computation/validation, etc.

6

Storage Class Memory-based File Systems

 Storage class memories available in the next decade may:

 Be within a factor of 2-10 times speed of DRAM
 Be large and inexpensive enough to replace disk drives
 Drive major changes in file system architecture and

implementation

 What will change in the file system:

 Externals (API, name space) will be slow to change
 Would require changes to applications, user interfaces

 Internals
 Levels below the interfaces will change most quickly
 Will provide the most immediate benefits

7

Storage Class Memory-based File Systems

 In-memory Caching

 Sufficiently fast SCM will obviate need for caching (locally)
 Fast enough to allow direct access to primary copy of data
 Eliminates unprocessed writes, program flushes to disk

 Multiple system access to SCM would provide
 Simpler locking protocol to allow distributed access to data
 No concerns for cache consistency

 Byte-level Addressing

 SCM would have no hardware-enforced block boundaries
 Eliminates need for read-modify-write for small updates
 Opportunity to rethink data structures for implementing FS

- B-trees have been the norm for years
- Structure with different behaviors could be explored
 - Skip lists, Bloom filters, etc., could be considered

8

Storage Class Memory-based File Systems

 SCM could be treated as main memory

 In terms of access and addressing
 Could use virtual memory capability to map ranges of SCM to

application's address space
 Input operations map SCM ranges as read-only memory
 Applications that use memory-mapped I/O (mmap) could

extend idea to output, as well

 Loading applications would be a memory-mapping operation
 Logical extension of shared, read-only mapping used in most

modern OSes today
 Memory speed masked by working set in processor cache

 If memory address mappings were persistent:
 Useful inter- and intra-file pointers could be implemented
 Efficient embedded data structures in files possible

9

Storage Class Memory-based File Systems

 File systems actually become an interface and name space
manager for Memory subsystem

 Block extent lists replaced by memory address range(s)

 At lowest level, all files processed as memory-mapped I/O
 Similar to what's done in several modern Unixes

 If SCM address space sufficiently large, files could always be
mapped to contiguous address space
 Greatly simplifies file management, address space mapping

 If storage is memory, what are paging/swapping used for?
 Paging as we know it could be unnecessary
 Most pages would never move
 Virtual Memory only used for mapping into address spaces?

10

Storage Class Memory-based File Systems

 SCM would have very different failure model from today's disk
drives

 Protection and space-efficiency of today's RAID still necessary
 But implementation will need to be completely rethought

 Unlikely that large amounts of data (like disk drive) will
become suddenly unavailable
 More likely that bits, or small ranges of bytes will fail together

 Erasure codes matched to the importance of individual data
files could be used
 Replace indiscriminate use of RAID for all files in a disk set

11

Storage Class Memory-based File Systems

 Opportunities for new storage paradigms?

 One such idea: Semantic file system access
 Ability to find and access data based on the contents or

attributes of the data
- Rather than through file's directory location and name

 Not new idea, but slow in gaining momentum
- Because users are content with current paradigm? or
- Because technology to implement useful semantic access
 is lagging?
- Today's model will not go away, but other options needed

 Ability to read and index data quickly from SCM may make
both indexing and searching more practical

 Some forms of SCM allow huge, fast content-addressable
memories, which could be useful in semantic file systems

12

Thank you!

Questions/Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

