
1

File Systems for
Storage Class Memory

David Pease, IBM Almaden Research Center (pease@almaden.ibm.com)
Darrell Long, U. C. Santa Cruz (darrell@cs.ucsc.edu)

mailto:pease@almaden.ibm.com

2

When Storage Class Memories become available,
they will drive profound changes in file system
architecture and implementation.

We explore ideas on how file systems could change to
support such storage.

3

File Systems Overview

 Modern file systems come in many types:

 Local, distributed, cluster
 General purpose vs. special-purpose

 Yet they provide many of same capabilities and services :

 Consistent programming API
 e.g., POSIX, Windows NT APIs

 Name space
 Way to name, organize, refer to files/data sets

- Directory-based, tree-structured (Unix, Windows, Mac)
- Essentially flat (zOS)

4

File Systems Overview (cont.)

 In-memory Caching

 Done for two complementary reasons, both related to the
disparity in memory vs. disk access time:

 For input operations, data is cached in the hope it will be
read in the future
- May have been read or written earlier, may be prefetched

 For output operations, data is cached to isolate application
from slow external device write speeds
- Data is cached, control is returned, flushed to disk later

- Can be problematic: system failure can lead to lost or
 inconsistent data

 Both are problematic when data is shared across systems
- Complex, often slow or error-prone locking techniques

5

File Systems Overview (cont.)

 Often tightly tied to Virtual Memory system of the OS

 Allows features like memory-mapped file I/O

 But can be very complex
- Windows file system/VMM interface very difficult

 Finally, I/O device access

 Could be very simple:

 Convert file offset to block address, call device driver

 But typically is not:

 Must deal with error conditions
 May involve read-modify-write, network access, multiple

device accesses, parity computation/validation, etc.

6

Storage Class Memory-based File Systems

 Storage class memories available in the next decade may:

 Be within a factor of 2-10 times speed of DRAM
 Be large and inexpensive enough to replace disk drives
 Drive major changes in file system architecture and

implementation

 What will change in the file system:

 Externals (API, name space) will be slow to change
 Would require changes to applications, user interfaces

 Internals
 Levels below the interfaces will change most quickly
 Will provide the most immediate benefits

7

Storage Class Memory-based File Systems

 In-memory Caching

 Sufficiently fast SCM will obviate need for caching (locally)
 Fast enough to allow direct access to primary copy of data
 Eliminates unprocessed writes, program flushes to disk

 Multiple system access to SCM would provide
 Simpler locking protocol to allow distributed access to data
 No concerns for cache consistency

 Byte-level Addressing

 SCM would have no hardware-enforced block boundaries
 Eliminates need for read-modify-write for small updates
 Opportunity to rethink data structures for implementing FS

- B-trees have been the norm for years
- Structure with different behaviors could be explored
 - Skip lists, Bloom filters, etc., could be considered

8

Storage Class Memory-based File Systems

 SCM could be treated as main memory

 In terms of access and addressing
 Could use virtual memory capability to map ranges of SCM to

application's address space
 Input operations map SCM ranges as read-only memory
 Applications that use memory-mapped I/O (mmap) could

extend idea to output, as well

 Loading applications would be a memory-mapping operation
 Logical extension of shared, read-only mapping used in most

modern OSes today
 Memory speed masked by working set in processor cache

 If memory address mappings were persistent:
 Useful inter- and intra-file pointers could be implemented
 Efficient embedded data structures in files possible

9

Storage Class Memory-based File Systems

 File systems actually become an interface and name space
manager for Memory subsystem

 Block extent lists replaced by memory address range(s)

 At lowest level, all files processed as memory-mapped I/O
 Similar to what's done in several modern Unixes

 If SCM address space sufficiently large, files could always be
mapped to contiguous address space
 Greatly simplifies file management, address space mapping

 If storage is memory, what are paging/swapping used for?
 Paging as we know it could be unnecessary
 Most pages would never move
 Virtual Memory only used for mapping into address spaces?

10

Storage Class Memory-based File Systems

 SCM would have very different failure model from today's disk
drives

 Protection and space-efficiency of today's RAID still necessary
 But implementation will need to be completely rethought

 Unlikely that large amounts of data (like disk drive) will
become suddenly unavailable
 More likely that bits, or small ranges of bytes will fail together

 Erasure codes matched to the importance of individual data
files could be used
 Replace indiscriminate use of RAID for all files in a disk set

11

Storage Class Memory-based File Systems

 Opportunities for new storage paradigms?

 One such idea: Semantic file system access
 Ability to find and access data based on the contents or

attributes of the data
- Rather than through file's directory location and name

 Not new idea, but slow in gaining momentum
- Because users are content with current paradigm? or
- Because technology to implement useful semantic access
 is lagging?
- Today's model will not go away, but other options needed

 Ability to read and index data quickly from SCM may make
both indexing and searching more practical

 Some forms of SCM allow huge, fast content-addressable
memories, which could be useful in semantic file systems

12

Thank you!

Questions/Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

