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Goals
✦ Metadata is often the limiting factor in file system 

performance
✦ More than 50% of FS operations are metadata
✦ Metadata operations are difficult to pipeline

✦ Metadata is small!
✦ Often fewer than 50 bytes of information per file
✦ Billions of files ➙ only tens of gigabytes of metadata

✦ Goal: use NVRAM to make metadata efficient
✦ Challenges

✦ Performance
- Block-based reads (for NAND flash) 
- Block-based writes (for NAND & NOR flash)

✦ Efficiency: need to keep index structures small
✦ Reliability: can’t afford to lose metadata!
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Metadata & indexing: the basics
✦ Metadata: information about files

✦ File ownership, size, age, type, usage patterns
- Tends to be relatively small

✦ File content: indexing terms
- Can be very large, depending on the files
- Can be text-based or derived in other ways using a 

transducer
✦ Basic metadata is very small

✦ Inode is less than 50 bytes, excluding location information
✦ Indexing metadata can be larger

✦ Many terms per file
✦ Very aggressive compression is possible
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Metadata performance
✦ Metadata performance is critical to file system 

performance
✦ 50–70% (or more) of requests are for metadata
✦ Operations are small and often random

- Difficult to pipeline (prefetch) metadata operations
✦ Metadata and search are increasing in importance

✦ Larger file systems ➙ more difficult to find data
✦ Larger file systems ➙ new approaches to organizing data

- Link-based file systems
- View-based file systems

✦ Metadata is critical to continued file system growth
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Designs for NVRAM-based 
metadata
✦ Metadata is a perfect fit for NVRAM

✦ Metadata is small, typically 0.1–1% of data space
- Can be much lower for large scientific computing

✦ Read access to metadata is mostly random
✦ Updates can be logged: sequential writes

✦ Explore three issues
✦ Metadata on flash: block access for writes and (for NAND) 

reads
✦ Metadata on word-accessible NVRAM: data structures
✦ Reliability

- Hardware errors
- Software errors

5



Why not use NVRAM-based 
databases?
✦ Why not use a standard off-the-shelf DB in NVRAM?

✦ Advantage: code is already written and works well!
✦ Drawbacks

- Databases aren’t very space-efficient: expensive on NVRAM
- Databases aren’t optimized well for FS metadata
- Databases are very complex: lots of locking necessary for 

disk-based DBs
✦ Potential gains for task-specific metadata indexes in 

NVRAM
✦ Higher performance: our experiments show 1–3 orders of 

improvement
✦ Lower space consumption
✦ Lower software complexity: no need to wait for disk-based I/O
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Metadata on flash: block access
✦ Goal: use block-based NVRAM 

to hold metadata
✦ Partition file system hierarchy 

by subtree
✦ Each subtree is an independent 

subindex
✦ Summarize contents

✦ Rule out entire subindexes that 
don’t have files that satisfy query

✦ Log incremental changes
✦ Rebuild index when there are 

“enough” changes
✦ Integrity is much easier

✦ Rebuild subindex, not entire index
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Using partitioned indexes
✦ Updates and rebuilds are more localized

✦ Updates are appended to the “base” index
- Subsequent searches look in both base and incremental indexes

✦ Periodic “rebuilding” of base index consolidates updates
✦ Fewer reads / traversals of actual indexes

✦ Only potentially relevant subindexes are scanned
✦ Individual subindexes cover about 100K files in 3 MB

- Index is a k-d tree (for now)
- Search may only need to read a part of relevant subindexes
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Byte-addressability for reads
✦ NAND flash: block reads and 

writes
✦ NOR flash: word addressable 

for reads
✦ How does this affect metadata 

accesses?
✦ Current design: decompress 

entire subindex to search it
✦ Slower, but more space efficient

✦ New design: search in 
compressed tree
✦ Less space efficient?
✦ Faster?
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Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability
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Term indexes in NVRAM
✦ Many standard techniques for indexing in memory

✦ Inverted indexing most common
✦ Many optimizations require byte-addressability

- Skip lists
✦ Use partitioned term indexes?

✦ Only need to scan a few term lists anyway
✦ May be helpful for multi-term searches

- Only if terms are uncommon
✦ Alternate approaches

✦ Redesign skip lists for block-based access
✦ Instead of interleaving, keep multiple lists joined together

✦ Byte-addressable NVRAM
✦ No need to modify algorithms: existing approaches are append-only
✦ Still may need partitioning, and definitely need reliability!
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NVRAM for archival storage 
metadata
✦ NVRAM has advantages for archival storage

✦ Low power consumption
✦ Avoids spinup of primary media (disk)
✦ Highly scalable: associate relatively small NVRAM with each 

media
✦ Searches

✦ Broadcast request to all nodes
✦ Use earlier strategies to narrow down nodes to search

✦ Scrubbing and reliability
✦ Cache disk checksums in NVRAM
✦ Allow consistency checking between nodes without having 

all disks spun up simultaneously
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Reliability for metadata in 
NVRAM
✦ Durability of recently-completed operations

✦ Metadata operations can’t complete until committed to 
stable store

✦ Need to guarantee both efficient storage and fast commit
✦ Reliability of data already written

✦ Guard against corruption
✦ Correctness of data written to NVRAM

✦ Guard against file system bugs!
✦ Double-check (or more) writes that are sent to NVRAM
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Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors
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Reliable byte-addressable 
NVRAM
✦ Byte-addressable NVRAM allows for small in-place 

modifications
✦ Problem: potential for data structure corruption
✦ Problem: wear leveling (PRAM)

✦ Use log structure for byte-addressable NVRAM
✦ Smaller appends ➙ faster metadata commit
✦ Similar approach to block-based: write followed by 

correctness check to handle file system errors
✦ Protect NVRAM with signature/hash and erasure code

✦ Signature/hash detects corruption
✦ Erasure code corrects it
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Conclusions
✦ Reliable, efficient metadata for large-scale storage is a 

good fit for NVRAM
✦ Small data size
✦ High IOPS
✦ Ability to guard against hardware & software errors

✦ NVRAM is suitable for both high-performance and 
archival storage

✦ Approach changes slightly as NVRAM moves from 
block-based to byte-addressable accesses
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