
Reliable and Efficient 
Metadata Storage and 

Indexing Using NVRAM
Ethan L. Miller

Kevin Greenan • Andrew Leung • Darrell Long • Avani Wildani
(and others)

Storage Systems Research Center
University of California, Santa Cruz



Goals
✦ Metadata is often the limiting factor in file system 

performance
✦ More than 50% of FS operations are metadata
✦ Metadata operations are difficult to pipeline

✦ Metadata is small!
✦ Often fewer than 50 bytes of information per file
✦ Billions of files ➙ only tens of gigabytes of metadata

✦ Goal: use NVRAM to make metadata efficient
✦ Challenges

✦ Performance
- Block-based reads (for NAND flash) 
- Block-based writes (for NAND & NOR flash)

✦ Efficiency: need to keep index structures small
✦ Reliability: can’t afford to lose metadata!

2



Metadata & indexing: the basics
✦ Metadata: information about files

✦ File ownership, size, age, type, usage patterns
- Tends to be relatively small

✦ File content: indexing terms
- Can be very large, depending on the files
- Can be text-based or derived in other ways using a 

transducer
✦ Basic metadata is very small

✦ Inode is less than 50 bytes, excluding location information
✦ Indexing metadata can be larger

✦ Many terms per file
✦ Very aggressive compression is possible

3



Metadata performance
✦ Metadata performance is critical to file system 

performance
✦ 50–70% (or more) of requests are for metadata
✦ Operations are small and often random

- Difficult to pipeline (prefetch) metadata operations
✦ Metadata and search are increasing in importance

✦ Larger file systems ➙ more difficult to find data
✦ Larger file systems ➙ new approaches to organizing data

- Link-based file systems
- View-based file systems

✦ Metadata is critical to continued file system growth

4



Designs for NVRAM-based 
metadata
✦ Metadata is a perfect fit for NVRAM

✦ Metadata is small, typically 0.1–1% of data space
- Can be much lower for large scientific computing

✦ Read access to metadata is mostly random
✦ Updates can be logged: sequential writes

✦ Explore three issues
✦ Metadata on flash: block access for writes and (for NAND) 

reads
✦ Metadata on word-accessible NVRAM: data structures
✦ Reliability

- Hardware errors
- Software errors

5



Why not use NVRAM-based 
databases?
✦ Why not use a standard off-the-shelf DB in NVRAM?

✦ Advantage: code is already written and works well!
✦ Drawbacks

- Databases aren’t very space-efficient: expensive on NVRAM
- Databases aren’t optimized well for FS metadata
- Databases are very complex: lots of locking necessary for 

disk-based DBs
✦ Potential gains for task-specific metadata indexes in 

NVRAM
✦ Higher performance: our experiments show 1–3 orders of 

improvement
✦ Lower space consumption
✦ Lower software complexity: no need to wait for disk-based I/O

6



Metadata on flash: block access
✦ Goal: use block-based NVRAM 

to hold metadata
✦ Partition file system hierarchy 

by subtree
✦ Each subtree is an independent 

subindex
✦ Summarize contents

✦ Rule out entire subindexes that 
don’t have files that satisfy query

✦ Log incremental changes
✦ Rebuild index when there are 

“enough” changes
✦ Integrity is much easier

✦ Rebuild subindex, not entire index

7

T0

Spyglass

indexer

T1 T2 T3

Baseline

index

T0 T2T0 T0 T2 T3

Incremental

indexes

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments

1 0 1 1 0 1 0 1•••

doc xls c

ppt

py pl h ppt

jpg

mov

hash(file extension) mod b

1 1 0 1 0 0 1 1•••

<1 1–4 5–31 32–

127

128–

255

256–

511

100MB–

500MB

>500MB

hash(file size)



Using partitioned indexes
✦ Updates and rebuilds are more localized

✦ Updates are appended to the “base” index
- Subsequent searches look in both base and incremental indexes

✦ Periodic “rebuilding” of base index consolidates updates
✦ Fewer reads / traversals of actual indexes

✦ Only potentially relevant subindexes are scanned
✦ Individual subindexes cover about 100K files in 3 MB

- Index is a k-d tree (for now)
- Search may only need to read a part of relevant subindexes

8

1 0 1 1 0 1 0 1•••

doc xls c

ppt

py pl h ppt

jpg

mov

hash(file extension) mod b

1 1 0 1 0 0 1 1•••

<1 1–4 5–31 32–

127

128–

255

256–

511

100MB–

500MB

>500MB

hash(file size)

T0

Spyglass

indexer

T1 T2 T3

Baseline

index

T0 T2T0 T0 T2 T3

Incremental

indexes

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments



Using partitioned indexes
✦ Updates and rebuilds are more localized

✦ Updates are appended to the “base” index
- Subsequent searches look in both base and incremental indexes

✦ Periodic “rebuilding” of base index consolidates updates
✦ Fewer reads / traversals of actual indexes

✦ Only potentially relevant subindexes are scanned
✦ Individual subindexes cover about 100K files in 3 MB

- Index is a k-d tree (for now)
- Search may only need to read a part of relevant subindexes

8

1 0 1 1 0 1 0 1•••

doc xls c

ppt

py pl h ppt

jpg

mov

hash(file extension) mod b

1 1 0 1 0 0 1 1•••

<1 1–4 5–31 32–

127

128–

255

256–

511

100MB–

500MB

>500MB

hash(file size)

T0

Spyglass

indexer

T1 T2 T3

Baseline

index

T0 T2T0 T0 T2 T3

Incremental

indexes

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments



Using partitioned indexes
✦ Updates and rebuilds are more localized

✦ Updates are appended to the “base” index
- Subsequent searches look in both base and incremental indexes

✦ Periodic “rebuilding” of base index consolidates updates
✦ Fewer reads / traversals of actual indexes

✦ Only potentially relevant subindexes are scanned
✦ Individual subindexes cover about 100K files in 3 MB

- Index is a k-d tree (for now)
- Search may only need to read a part of relevant subindexes

8

1 0 1 1 0 1 0 1•••

doc xls c

ppt

py pl h ppt

jpg

mov

hash(file extension) mod b

1 1 0 1 0 0 1 1•••

<1 1–4 5–31 32–

127

128–

255

256–

511

100MB–

500MB

>500MB

hash(file size)

T0

Spyglass

indexer

T1 T2 T3

Baseline

index

T0 T2T0 T0 T2 T3

Incremental

indexes

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments



Byte-addressability for reads
✦ NAND flash: block reads and 

writes
✦ NOR flash: word addressable 

for reads
✦ How does this affect metadata 

accesses?
✦ Current design: decompress 

entire subindex to search it
✦ Slower, but more space efficient

✦ New design: search in 
compressed tree
✦ Less space efficient?
✦ Faster?

9



Byte-addressability for reads
✦ NAND flash: block reads and 

writes
✦ NOR flash: word addressable 

for reads
✦ How does this affect metadata 

accesses?
✦ Current design: decompress 

entire subindex to search it
✦ Slower, but more space efficient

✦ New design: search in 
compressed tree
✦ Less space efficient?
✦ Faster?

9



Byte-addressability for reads
✦ NAND flash: block reads and 

writes
✦ NOR flash: word addressable 

for reads
✦ How does this affect metadata 

accesses?
✦ Current design: decompress 

entire subindex to search it
✦ Slower, but more space efficient

✦ New design: search in 
compressed tree
✦ Less space efficient?
✦ Faster?

9



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001

0



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001

0
UID GID PERM #

elm faculty rwxr-x--- 0

kmgreen grads rwx------ 1

elm faculty rw-r--r-- 2

elm ssrc rwxrwx--- 3



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001

0
UID GID PERM #

elm faculty rwxr-x--- 0

kmgreen grads rwx------ 1

elm faculty rw-r--r-- 2

elm ssrc rwxrwx--- 3



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001

0
UID GID PERM #

elm faculty rwxr-x--- 0

kmgreen grads rwx------ 1

elm faculty rw-r--r-- 2

elm ssrc rwxrwx--- 3



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001

0
UID GID PERM #

elm faculty rwxr-x--- 0

kmgreen grads rwx------ 1

elm faculty rw-r--r-- 2

elm ssrc rwxrwx--- 3



Storing metadata efficiently
✦ Compress values aggressively

✦ Compress numbers
✦ Use tables for frequent values
✦ Store times as differences from 

base times
✦ Save space on log entries

✦ Only log modified fields
✦ Point to earlier full copy of 

metadata
✦ Modifications can be chained...

- Start looking at most recent update 
& follow chain

✦ Eventually need to “clean up” 
metadata

✦ These techniques work far 
better with byte addressability

10

00000000000000000000000000000001

0
UID GID PERM #

elm faculty rwxr-x--- 0

kmgreen grads rwx------ 1

elm faculty rw-r--r-- 2

elm ssrc rwxrwx--- 3



Term indexes in NVRAM
✦ Many standard techniques for indexing in memory

✦ Inverted indexing most common
✦ Many optimizations require byte-addressability

- Skip lists
✦ Use partitioned term indexes?

✦ Only need to scan a few term lists anyway
✦ May be helpful for multi-term searches

- Only if terms are uncommon
✦ Alternate approaches

✦ Redesign skip lists for block-based access
✦ Instead of interleaving, keep multiple lists joined together

✦ Byte-addressable NVRAM
✦ No need to modify algorithms: existing approaches are append-only
✦ Still may need partitioning, and definitely need reliability!

11



NVRAM for archival storage 
metadata
✦ NVRAM has advantages for archival storage

✦ Low power consumption
✦ Avoids spinup of primary media (disk)
✦ Highly scalable: associate relatively small NVRAM with each 

media
✦ Searches

✦ Broadcast request to all nodes
✦ Use earlier strategies to narrow down nodes to search

✦ Scrubbing and reliability
✦ Cache disk checksums in NVRAM
✦ Allow consistency checking between nodes without having 

all disks spun up simultaneously

12



Reliability for metadata in 
NVRAM
✦ Durability of recently-completed operations

✦ Metadata operations can’t complete until committed to 
stable store

✦ Need to guarantee both efficient storage and fast commit
✦ Reliability of data already written

✦ Guard against corruption
✦ Correctness of data written to NVRAM

✦ Guard against file system bugs!
✦ Double-check (or more) writes that are sent to NVRAM

13



Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors

14



Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors

14



Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors

14



Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors

14



Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors

14



Reliable NVRAM: approach

✦ Updates to indexing data structures done by append
• Avoids corrupting old (but valid) structures
• Reduces lock contention: reader/writer locks only on current block

✦ Appended information includes
• Index updates
• Checksums (signatures / hashes)
• Erasure code blocks

✦ Appended information checked by separate process
• No overwrite in place!
• Easier to recover from errors

14

Data

Parity

R-S



Reliable byte-addressable 
NVRAM
✦ Byte-addressable NVRAM allows for small in-place 

modifications
✦ Problem: potential for data structure corruption
✦ Problem: wear leveling (PRAM)

✦ Use log structure for byte-addressable NVRAM
✦ Smaller appends ➙ faster metadata commit
✦ Similar approach to block-based: write followed by 

correctness check to handle file system errors
✦ Protect NVRAM with signature/hash and erasure code

✦ Signature/hash detects corruption
✦ Erasure code corrects it

15



Conclusions
✦ Reliable, efficient metadata for large-scale storage is a 

good fit for NVRAM
✦ Small data size
✦ High IOPS
✦ Ability to guard against hardware & software errors

✦ NVRAM is suitable for both high-performance and 
archival storage

✦ Approach changes slightly as NVRAM moves from 
block-based to byte-addressable accesses

16



17

Questions?


