
A Simple Approach to Find the
Address Mapping Scheme of USB

Flash Drives

Jaehyuck Cha (chajh@hanyang.ac.kr)
Sooyong Kang (sykang@hanyang.ac.kr)

Hanyang University, Korea

Outline

v Backgrounds
§ NAND Flash Memory
§ USB Flash Drives

v Motivation
v Mapping Algorithms of FTL
v Mapping Algorithm Identification Mechanism
v Experiments
v Conclusion & Further Issues

v Backgrounds
§ NAND Flash Memory
§ USB Flash Drives

v Motivation
v Mapping Algorithms of FTL
v Mapping Algorithm Identification Mechanism
v Experiments
v Conclusion & Further Issues

NAND Flash Memory

v Physical organization
§ An array of blocks (erase units)
§ A block is an array of pages
§ Example

• 16 Kbyte block
= 512 Byte page x 32

• 128 Kbyte block
= 2 Kbyte page x 64

• 512 Kbyte block
= 4 Kbyte page x 128

§ Spare area
• Small space for ECC and application’s metadata
• Example

– 16 byte for 512 Byte page
– 64 byte for 2 Kbyte page
– 128 byte for 4 Kbyte page

Page

Page

Page

...

Page

Page

Page
...

Page

Page

Page

...

Page

Page

Page

...

...

Blockv Physical organization
§ An array of blocks (erase units)
§ A block is an array of pages
§ Example

• 16 Kbyte block
= 512 Byte page x 32

• 128 Kbyte block
= 2 Kbyte page x 64

• 512 Kbyte block
= 4 Kbyte page x 128

§ Spare area
• Small space for ECC and application’s metadata
• Example

– 16 byte for 512 Byte page
– 64 byte for 2 Kbyte page
– 128 byte for 4 Kbyte page

NAND Flash Memory (con’d)

§ Read/Write and erase operations

* : Optional operation

§ Asymmetric I/O in terms of its speed and data unit
§ Not in-place-update: A block should be erased to re-write a

page
à (Logical to physical) Address mapping

Operation Data Unit Time (us)

Read Page 60

Write Page 800

Erase Block 1500

Copy-back* Page ~800

*Samsung Datasheets K9XXG08UXM (www.datasheet4u.com)

§ Read/Write and erase operations

* : Optional operation

§ Asymmetric I/O in terms of its speed and data unit
§ Not in-place-update: A block should be erased to re-write a

page
à (Logical to physical) Address mapping

Example of NAND Flash Operations

v Modifying a data page

Z Page 0

Page 1

Free page

• Write data ‘A’ to sector 1

• Write data ‘B’ to sector 1
- Re-write to sector 1

Page 1 is free.
Write the data
Page 1 is NOT

free.

A

Copy page 0 to
main memory

buffer.

in-memory buffer

Write page 0
again

Write data B to
page 1

B

Every update
operation to a data
page causes a block

erase operation.

Block 0

Page 2

Page 3

Page 4

Page 1 is free.
Write the data
Page 1 is NOT

free.

We need to erase
the block.

in-memory buffer

Z

Now, erase the
block

Write data B to
page 1

Every update
operation to a data
page causes a block

erase operation.

Every update
operation to a data
page causes a block

erase operation.

Example of NAND Flash Operations (cont’d)

v A better approach

Z Page 0

Page 1A

• Write data ‘A’ to sector 1

• Write data ‘B’ to sector 1

Free page

Page 1 is free.
Write the data
Page 1 is NOT

free.

No block erase
operation on a page

update.

Block 0

Page 2

Page 3

Page 4

Page 1 is free.
Write the data
Page 1 is NOT

free.

Write the data in
an another free

page.

Sector # Page #

0 0

Mapping Table

Add a new entry
in the mapping

table

1 1

B

Modify the entry
in the mapping

table

2

No block erase
operation on a page

update.

No block erase
operation on a page

update.

NAND Flash Memory (con’d)

v Characteristics (con’d)

§ Bad blocks, bit-flips
à Bad block management

§ A block can be worn-out after limited # of erase operations
à Wear-leveling

§ Large block flash memories (2K and 4K page)
• Pages should be written in ascending order in a block
• Applications cannot use spare area (due to large ECC)
• Shorter life cycle

v Characteristics (con’d)

§ Bad blocks, bit-flips
à Bad block management

§ A block can be worn-out after limited # of erase operations
à Wear-leveling

§ Large block flash memories (2K and 4K page)
• Pages should be written in ascending order in a block
• Applications cannot use spare area (due to large ECC)
• Shorter life cycle

USB Flash Drives

v Internals of a USB flash drive

Filesystem

Block Layer

Host System (Kernel)

It’s a block device
like a hard disk

Flash Memory Chip

Controller

Host Interface (USB, CF, ATA, ...)

NAND Interface
(Samsung, Toshiba,

ONFI)

Block Device Driver

SRAM

Comparison of Flash-based File System Architecture

Traditional HDD-based FS (FAT, …) /
Flash Aware FS (NILFS, …)

Block Layer

Block Device Driver

Host System (Kernel)

UBI FS

UBI

Host System (Linux Kernel)

MTD Driver

LogFS / YAFFS / …

Host System (Linux Kernel)

MTD Driver

Flash Memory Chip

Controller

Host Interface

NAND Interface

SRAM

Flash Memory Chip

NAND Interface

Flash Memory Chip

NAND Interface

File System TPC-B
Result (tps)

Ext2 16.26

NILFS 55.03

USB Flash Drives (cont’d)

v FTL (Flash Translation Layer)

512B 512B 512B 512B 512B...

Controller

- Array of 512B sectors
- No bad blocks
- No erase operations

Host System
(Kernel)

Logical block device
read_sector(), write_sector()

Host system
sees the

logical device
only

… SRAM
(mapping table,

etc.)

(Logical to physical) Address mapping

Page

Page

Page

...

Page

Page

Page

...

Page

Page

Page
...

Page

Page

Page

...

Page

Page

Page

...

...

BAD

Block 0 Block 1 Block n...

Physical Flash Memory Chip

- Array of blocks (erase units)
- A block is an array of pages
- Block erase is needed to re-write

a page
- Contains errors and bad blocks

- Emulates a block device
(FTL mapping algorithm)

read_page(), write_page() erase_block(), copyback_page()

Bad block handling Wear leveling

… SRAM
(mapping table,

etc.)

(Logical to physical) Address mapping

Garbage collection

Motivation

v For Performance Tuning,
the Address mapping of a FTL is important!!

Operating
System

Request LBA
Sequence

Reduced and
Reordered LBA

Sequence

1 2 3 4 7 8 3 11

12 5 2 3 5 19 1 22……

User
Application

Text editor Web-browser …

Buffer
cache

Prefetching
module

Block I/O
layer

…

……

Translate
LBA into
Physical
Address

Reduced and
Reordered LBA

Sequence

Physical
Flash Memory

NFTL BAST FAST F-MAX …

1 2 3 4 7 8 11 12

5 19 ……22

……
9,0 9,1 9,2 9,3 4,2 4,3

12,2 1,0 30,2 23,212,3

HDD

FTL

Motivation

v Performance according to the various Address
mapping schemes and the data traces

Effect of Buffer Replacement Algorithms on BAST with GCC trace

Algorithm Hit ratio # write # erase

LRU 21.44% 9,479 269

FAB 20.14% 8,600 232

TPC-C Result on various FTL

FTL # read # write # erase #copy-back Response
Time

FTL # read # write # erase #copy-back Response
Time

FMAX 1745054 900476 26601 618497 0.55

Mitsubishi 14403668 887344 26232 959039 1.76

BAST 48909061 887344 1502727 47922889 17.95

Linux Desktop Trace on Various FTL

FTL # read # write # erase Elapsed Time

FMAX 32976540 2029560 62845 86.13

Mitsubishi 25522819 3536466 109890 118.23

BAST 2011545 2005865 62561 54.64

Address Mapping Schemes of FTL

v Address Mapping schemes
§ Page-level mapping scheme
§ Block-level mapping scheme
§ Hybrid mapping scheme

Mapping Schemes (con’d)

v Page-level mapping scheme
§ Keep mapping entries for each page

• Mapping entry (Logical page # : Physical page #)

0 6

1 16

LPN PPN
Valid

Valid

Free

Free

Valid

Free

Block 0 Block 1

Valid

Free

Valid

Block 2

1 16

2 4

3 8

… …

… …

20 0

Page Mapping Table

Free

Valid

Free

Free

Free

Valid

Free

Free

Valid

Free

Valid

Free

Block 3

Valid

Valid

Block 4

Free

Free

Valid

Free

Block 5

It’s not used for USB flash drives
because huge mapping table is needed!

Mapping Schemes (cont’d)

v Block-level mapping scheme
§ Keep mapping entries for each block

§ Mapping Entry (Logical block #, Physical block #)

0 1 … 161 … M

LSN

LBN PBN
Integer(161/32) = 5(as LBN)

0

1

…

31

0

1

…

31

0

1

…

31

… …

Physical Block 0 Physical Block 2 Physical Block (M/32)

0 0

.. …

5 2

… …

Block Mapping
Table

LBN PBN
Integer(161/32) = 5(as LBN)

161 Modulo 32 = 1(as offset)

Example of Modified Block-level Mapping

v Developed by Lexar
§ Has special spare block called “Replacement Block”
§ Any free block can be a replacement block
§ Block in Block Map is called “Data Block”

0 -

1 -

2 -

LBN PBN

Free

Free

Free

Free

Block 0 Block 1

Free

Free

Block 2

Index of
table

represents
LBN.

of Pages/Block=4
total # of effective Blocks=4

2 -

3 -

Block Map
(SRAM)

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Block 3

Free

Free

Block 4

Free

Free

Free

Free

Block 5

Initial state of NAND FTL

Index of
table

represents
LBN.

1 bytes is enough for
addressing all blocks,
thus total RAM table

size is 4 *1 = 4 bytes

Example of Modified Block-level Mapping (cont’d)

v Write LSN 6

0

1

2

LBN PBN

Free

Free

Free

Free

Block 0 Block 1

Free

Free

Block 2

6

1. LBN
6 / 4 = 1

0

2. Allocate new
Free block

2. Allocate new
Free block

3. Offset 6 % 4 = 2

Valid

3. Write Data and set
valid bit

3. Write Data and set
valid bit

2

3

Block Map

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Block 3

Free

Free

Block 4

Free

Free

Free

Free

Block 5

1. LBN
6 / 4 = 1

3. Offset 6 % 4 = 23. Offset 6 % 4 = 2

Valid

3. Write Data and set
valid bit

Example of Modified Block-level Mapping (cont’d)

v Write LSN 6 Again

0 2

1 0

2 4

LBN PBN

Free

Free

Free

Free

Block 0 Block 1

Valid

Free

Block 2

6

1. LBN
6 / 4 = 1

2. Allocate another free
block called

“Replacement Block”
and set pointer to it

1. Change its status to
“invalid”

Invalid Valid2 4

3 3

Block Map

Valid

Free

Free

Free

Free

Free

Free

Free

Valid

Free

Valid

Free

Block 3

Valid

Valid

Block 4

Free

Free

Free

Free

Block 5

Replacement Block in not in block map!

1. LBN
6 / 4 = 1 Invalid Valid

3. Write &
Change its status to

“valid”

Example of Modified Block-level Mapping (cont’d)

v Merge Operation
§ When there’s not enough space in replacement block, merge

operation should be done.
§ Choose a block (or blocks) and copy valid pages to new block

and erase old block(s)

Free

Invalid

Free

Valid

Block 0 Block 1

Free

Free

Block 5 (free)

Before
LBN PBN

ValidInvalid

Valid

Invalid

Valid

Free

Valid

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Valid

Valid

Valid

ERASE THESE BLOCKS

Before

After

0 2

1 0

2 4

3 3

Block Map

LBN PBN

5
Valid
Valid
Valid

Typical Block-level mapping scheme

v Lexar Media (LM)

§ The total # of effective data blocks
• is approximately the half of the total # of blocks

§ Each effective data block has at most one replacement block
• If so, each page in an effective block has exactly one page with

same offset in a corresponding replacement block

PBN Block PBN
Replacement

Block

…312

…FFT

…210LBN -

PBN -

Ram Table

Moved -

v Lexar Media (LM)

§ The total # of effective data blocks
• is approximately the half of the total # of blocks

§ Each effective data block has at most one replacement block
• If so, each page in an effective block has exactly one page with

same offset in a corresponding replacement block

modified Block-level mapping scheme

v M-Systems (FMAX)

§ The total # of effective data block
• is the half of the total # of blocks

§ Each effective data block has at most one replacement block
• If so, each page in an effective block can have several pages

(among them, only one valid page exist!) in a corresponding
replacement block

…312

…210LBN -

PBN -

Ram Table
PBN Block PBN

Replacement
Block

v M-Systems (FMAX)

§ The total # of effective data block
• is the half of the total # of blocks

§ Each effective data block has at most one replacement block
• If so, each page in an effective block can have several pages

(among them, only one valid page exist!) in a corresponding
replacement block

modified Block-level mapping scheme

v Mitsubishi (MSBS)

§ The total # of effective data blocks
• is approximately same as the total # of blocks

§ Each effective data page in a data block
• has several corresponding pages (among them, only one valid page

exits!) in the replacement area of a same data block

…312

…210LBN -

PBN -

Ram Table

PBN

replacement
area

data area

Block

v Mitsubishi (MSBS)

§ The total # of effective data blocks
• is approximately same as the total # of blocks

§ Each effective data page in a data block
• has several corresponding pages (among them, only one valid page

exits!) in the replacement area of a same data block

Example of Modified Block-level Mapping – FMAX2

0 2

1 0

2 4

LBN PBN

Free

invalid

Free

Free

Block 0 Block 1

Valid

Free

Block 2

6

1. LBN
6 / 4 = 1

Write LBA 6 repeatedly…

2 4

3 3

Block Map

invalid

Free

valid

Free

Free

Free

Free

Free

Valid

Free

Valid

Free

Block 3

Valid

Valid

Block 4

Free

Free

Free

Free

Block 5

1. LBN
6 / 4 = 1 Invalid

Valid

v FMAX2 allows maximum 2 replacement blocks per each page.

Invalid

Valid

Example of Modified Block-level Mapping – FMAX2 (cont’d)

v Merge Operation of FMAX2
§ 3 blocks are associated with a single merge operation!

Free Free

Block 0 Block 1

Free

Block 5 Before

LBN PBNFree

Block 3 (free)

ValidInvalid

Valid

Invalid

Invalid

Free

Valid

Free

Valid

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Valid

Valid

Valid

ERASE THESE BLOCKS

After

0 2

1 0

2 4

3 3

Block Map

LBN PBN

3
Free

Free

Free

Free

Free

Free

Free

Valid
Valid
Valid

Mapping Schemes (cont’d)

v Hybrid mapping scheme
§ Most of blocks called “data block” are allocated by block

mapping algorithm
§ A few blocks called “log block” are allocated by page mapping

algorithm

0 1 … 161 … M

LPN
0 0 6

LPN OffsetPBN

0 1 … 161 … M

0

1

2

3

4

…

31

…

Block 0 Block 2 Block (M/32)

158 3 1

161 3 3

162 … …

Page Mapping Table

PBN

0 0

1 1

5 2

… …

LBN

Block Mapping Table

0

1

invalid

3

4

…

31

0

Invalid

2

3

4

…

31

0

1

2

3

4

…

31

Block 3

Simple Hybrid Mapping Example

0 1 … 161 … M

LSN
PBN

0 0

1 1

5 1

… …

LBN

Block Mapping
Table

0

1

2

3

4

…

31

…

Block 0 Block 2 Block (M/32)

0 0 6

158 3 1

161 3 3

162 … …

Sector
Mapping Table

LSN OffsetPBN

Block Mapping
Table

0

1

invalid

3

4

…

31

0

Invalid

2

3

4

…

31

0

1

2

3

4

…

31

Block 3

It’s invalid!

This is valid
page!

Then find Sector Map

Hybrid Mapping

v BAST, FAST, Super Block
§ Data Block : Log Block = N : M

• P: the total # of effective data pages
• L: the total # of log blocks

Data Block Log Block Data Block Log Block Data Block Log Block
000000 000000 000000

BAST (Block associative)
1:1

FAST(Fully associative)
P:L

Super Block
N:M

000000

000000

000000

000000

000000

000000

Identification of the Mapping Scheme
Target Device Assumption

v USB flash drives that have large-block NAND flash
memories
§ We can get the number of pages per block and page size from

datasheets
§ A block has 64/128 pages
§ The size of a page is 2/4KB

Identification of the Mapping Scheme
Classification of Major Mapping Schemes

Address mapping

Page-level mapping

TEST1
page-level
mapping ?

TEST2
block-level
mapping?

TEST3-1&2
log block

associativity

Non page-level mapping

Block-level
mapping

Hybrid mapping
(Log block)

TEST3-1&2
log block

associativity

(Data block:Log
block) Associativity

TEST4
number of
log blocks

Log block
algorithm

Identification of Mapping Schemes
Time Interval Measurements

v Timing measurements
§ Open a character device file with O_DIRECT
§ Send requests to the device with page-oriented I/Os
§ Measure the time interval between device issue and complete

• Block IO trace facility of linux (blktrace)
• Time interval is calculated in the unit of usec

int fd = open (“/dev/sda”, O_RDWR | O_DIRECT);
char buf[PAGE_SIZE];
off_t offset = pageno * PAGE_SIZE;
…
/* Write a page. */
pwrite (fd, buf, count, offset);
…

int fd = open (“/dev/sda”, O_RDWR | O_DIRECT);
char buf[PAGE_SIZE];
off_t offset = pageno * PAGE_SIZE;
…
/* Write a page. */
pwrite (fd, buf, count, offset);
…

Identification of the Mapping Schemes
Time Interval Measurements (cont’d)

Merge operations can
be detected by

comparing I/O latency

Merge operations can
be detected by

comparing I/O latency

Identification of the Mapping Schemes

Test Methods 1
v Page-level mapping?

§ Write pages in the following sequence

§ { 0,0,...,0}

§ get the average merge cycle
• Merge cycle = the # of page write requests between the nth

merge operation and the (n+1)th merge operation
§ Page-level mapping if the average merge cycle cannot

determined or approximately same as N
§ Block-level / Hybrid mapping if the average merge cycle is

below the threshhold(20% of total # of pages)

N= number of whole pages

v Page-level mapping?
§ Write pages in the following sequence

§ { 0,0,...,0}

§ get the average merge cycle
• Merge cycle = the # of page write requests between the nth

merge operation and the (n+1)th merge operation
§ Page-level mapping if the average merge cycle cannot

determined or approximately same as N
§ Block-level / Hybrid mapping if the average merge cycle is

below the threshhold(20% of total # of pages)

v Block-level mapping?
§ Feature of a modified block
§ Write pages in the following sequence

(e.g. 64 pages per block)

{ 0,0,...,0, 64,64,...,64, 128,128,…,128, 192,192,...,192, … }

§ Check if several consecutive merge operations are generated
• If so, block-level mapping method
• Otherwise, hybrid mapping method or modified block-level

mapping method

Identification of the Mapping Schemes
Test Methods 2

Block 0 Block 1 Block 2 Block 3

v Block-level mapping?
§ Feature of a modified block
§ Write pages in the following sequence

(e.g. 64 pages per block)

{ 0,0,...,0, 64,64,...,64, 128,128,…,128, 192,192,...,192, … }

§ Check if several consecutive merge operations are generated
• If so, block-level mapping method
• Otherwise, hybrid mapping method or modified block-level

mapping method

Block 0 Block 1 Block 2 Block 3

v Log block associativity
§ # of data blocks : # of log blocks = M : N

v TEST 3-1
§ A log block set = a set of log blocks associated with a data

block
§ Find N = # of log blocks associated with a data block

• Write a page continuously { 0, 0, 0, … , 0 }
• Check the cycle of a merge operation
• N = (the average merge cycle / # of pages per block)

through the Test Method 1&2&3-1

Identification of the Mapping Schemes
Test Methods 3-1&2

v Log block associativity
§ # of data blocks : # of log blocks = M : N

v TEST 3-1
§ A log block set = a set of log blocks associated with a data

block
§ Find N = # of log blocks associated with a data block

• Write a page continuously { 0, 0, 0, … , 0 }
• Check the cycle of a merge operation
• N = (the average merge cycle / # of pages per block)

through the Test Method 1&2&3-1

v TEST 3-2
§ Get all the data block sets

• A data block set = A set of data blocks associated with a log
block set

§ Get all the data block sets, i.e., disjoint sets with UNION-
FIND algorithm
1. Make each data block a set
2. For each two set, test if the two representative

elements belong to same log block set
1. If yes, UNION the two sets

3. During the step 2, at least one UNION happen, then
goto step 2

§ Find M = # of data blocks associated with a log block set

Identification of the Mapping Schemes
Test Methods 3-1&2 (con’d)

v TEST 3-2
§ Get all the data block sets

• A data block set = A set of data blocks associated with a log
block set

§ Get all the data block sets, i.e., disjoint sets with UNION-
FIND algorithm
1. Make each data block a set
2. For each two set, test if the two representative

elements belong to same log block set
1. If yes, UNION the two sets

3. During the step 2, at least one UNION happen, then
goto step 2

§ Find M = # of data blocks associated with a log block set

v Number of log blocks
1. Assume that # of log blocks, N = 2
2. Fill the log blocks with data pages associative with the log

blocks
3. If only N merge operations are generated

1.N = N + 1
2.Goto step 2.

4. If more than N merge operations are generated
1.# of log blocks = N - 1

Identification of the Mapping Schemes
Test Methods 4

v Number of log blocks
1. Assume that # of log blocks, N = 2
2. Fill the log blocks with data pages associative with the log

blocks
3. If only N merge operations are generated

1.N = N + 1
2.Goto step 2.

4. If more than N merge operations are generated
1.# of log blocks = N - 1

v Target devices
§ Samsung USB Flash Drive SUB-1G

• OTI’s OTI002168-G controller
• Samsung’s K9K8G08U0A NAND flash memory (SLC)

§ SKY digital Swing Solo 1G White
• Silicon Motion’s SM3210F controller
• Hynix’ HY27UG088G5M NAND flash memory (SLC)

§ SKY digital Swing Solo 1G Black
• Silicon Motion’s SM3210F controller
• Samsung’s K9G8G08U0M NAND flash memory (MLC)

§ Transcend
• Samsung’sK9LBG08U0M NAND flash memory (MLC)

Experimental Tests on Real Devices

v Target devices
§ Samsung USB Flash Drive SUB-1G

• OTI’s OTI002168-G controller
• Samsung’s K9K8G08U0A NAND flash memory (SLC)

§ SKY digital Swing Solo 1G White
• Silicon Motion’s SM3210F controller
• Hynix’ HY27UG088G5M NAND flash memory (SLC)

§ SKY digital Swing Solo 1G Black
• Silicon Motion’s SM3210F controller
• Samsung’s K9G8G08U0M NAND flash memory (MLC)

§ Transcend
• Samsung’sK9LBG08U0M NAND flash memory (MLC)

v Samsung 1G SLC
§ TEST1 – Non page-level mapping
§ TEST2 – Block-level mapping?

• Logical blocks are divided by two regions
– Region1: Hybrid-mapping scheme (0~15)
– Region2: Block-level mapping scheme (16~)

Experimental Tests on Real Devices (cont’d)

v TEST 3/4 on Samsung 1G SLC (cont’d)
v (# data blocks : # of block blocks) = M:N

§ TEST3-1 – # of log blocks associated with a data block
• A log block set

– a set of log blocks associated with a data block
• N = the # of log blocks in a log block set

§ TEST3-2 - # of data blocks associated with a log block set
• A data block set

– A set of data blocks associated with a log block set
• M = the # of data blocks in a data block set
• If M:N = 1:1, Block-associative log block mapping
• If M:N, Fully Associative log block mapping

§ TEST 4 – total # of log blocks
• 16 log blocks for 16 data blocks

Experimental Tests on Real Devices (cont’d)

v TEST 3/4 on Samsung 1G SLC (cont’d)
v (# data blocks : # of block blocks) = M:N

§ TEST3-1 – # of log blocks associated with a data block
• A log block set

– a set of log blocks associated with a data block
• N = the # of log blocks in a log block set

§ TEST3-2 - # of data blocks associated with a log block set
• A data block set

– A set of data blocks associated with a log block set
• M = the # of data blocks in a data block set
• If M:N = 1:1, Block-associative log block mapping
• If M:N, Fully Associative log block mapping

§ TEST 4 – total # of log blocks
• 16 log blocks for 16 data blocks

Experimental Tests on Real Devices (cont’d)

v TEST 3 on Samsung 1G SLC (cont’d)

25
30
35
40
45
50

La
te

nc
y(

x1
00

0u
s)

TEST3-1

30

40

50

60

F
ir

st

m

e
rg

e

TEST3-2

0
5

10
15
20
25

0 100 200 300

La
te

nc
y(

x1
00

0u
s)

Write Request

0

10

20

30

(0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8)
F
ir

st

m

e
rg

e

Experimental Tests on Real Devices (cont’d)

v TEST 4 on Samsung 1G SLC (cont’d)

30

40

50

L
a
te

n
cy

(x
1

0
0

0
u

s)

TEST4 (n=16)

30

40

50

L
a
te

n
cy

(x
1

0
0

0
u

s)

TEST4 (n=17)

0

10

20

30

0 500 1000

L
a
te

n
cy

(x
1

0
0

0
u

s)

Write Request

0

10

20

30

0 500 1000
L
a
te

n
cy

(x
1

0
0

0
u

s)
Write Request

v SKY digital 1G SLC
§ TEST1 – Non page-level mapping
§ TEST2 – Block-level mapping?

• Logical blocks are divided by two regions
– Region1: Hybrid-mapping method (0 ~ 7)
– Region2: Block-level mapping scheme (8 ~)

Experimental Tests on Real Devices (cont’d)

50

TEST2 (n=2)

v SKY digital 1G SLC
§ TEST1 – Non page-level mapping
§ TEST2 – Block-level mapping?

• Logical blocks are divided by two regions
– Region1: Hybrid-mapping method (0 ~ 7)
– Region2: Block-level mapping scheme (8 ~)

0

10

20

30

40

50

0 500 1000

L
a
te

n
cy

(x
1

0
0

0
u

s)

Write Request

v TEST3/4 on SKY digital 1G SLC
v (# data blocks : # of block blocks) = M:N

§ TEST3-1 – # of log blocks associative with a data block
• Merge cycle = 128 (2 blocks)
• N = Log block set = 2 blocks

§ TEST3-2 - # of data blocks associative with a log block set
• M = Data block set = 2 physically consecutive blocks

§ TEST 4 - # of log blocks
• 2 log block sets for 4 data block sets
• A block set consist of two physical blocks
• 4 log blocks for 8 data blocks

Experimental Tests on Real Devices (cont’d)

v TEST3/4 on SKY digital 1G SLC
v (# data blocks : # of block blocks) = M:N

§ TEST3-1 – # of log blocks associative with a data block
• Merge cycle = 128 (2 blocks)
• N = Log block set = 2 blocks

§ TEST3-2 - # of data blocks associative with a log block set
• M = Data block set = 2 physically consecutive blocks

§ TEST 4 - # of log blocks
• 2 log block sets for 4 data block sets
• A block set consist of two physical blocks
• 4 log blocks for 8 data blocks

Experimental Tests on Real Devices (cont’d)

v TEST3 on SKY digital 1G SLC (cont’d)

20

25

30

35

La
te

nc
y

(m
s)

TEST3-1

80

100

120

140

F
ir

st

m

e
rg

e

TEST3-2

0

5

10

15

20

0 100 200 300

La
te

nc
y

(m
s)

Write Request

0

20

40

60

80

(0,1) (0,2) (0,3)
F
ir

st

m

e
rg

e

Experimental Tests on Real Devices (cont’d)

v TEST4 on SKY digital 1G SLC (cont’d)

20

30

40

50

L
a
te

n
cy

(m
s)

TEST4 (n=2)

15

20

25

30

35

L
a
te

n
cy

 (
m

s)

TEST4 (n=3)

0

10

20

0 500 1000

L
a
te

n
cy

(m
s)

Write Request

0

5

10

15

0 100 200 300

L
a
te

n
cy

 (
m

s)
Write Request

v SKY digital 1G MLC
§ TEST1 – Non page-level mapping
§ TEST2 – Block-level mapping?

• Every write operation generates merge
– Simple block-level mapping scheme

Experimental Tests on Real Devices (cont’d)

140

160

TEST2

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

L
a
te

n
cy

 (
m

s)

Write Request

Experimental Tests on Real Devices (cont’d)

v Transcend 4G MLC
§ 4K page NAND flash memory (128 pages per block)
§ TEST1 – Non page level mapping scheme
§ TEST2 – Block-level mapping?

• All blocks are mapped by hybrid mapping scheme

160
180

La
te

nc
y(

x1
00

0u
s)

TEST 2

0
20
40
60
80

100
120
140
160

0 200 400 600 800 1000

La
te

nc
y(

x1
00

0u
s)

Write Request

v TEST3/4 on Transcend 4G MLC
v (# data blocks : # of block blocks) = M:N

§ TEST3-1 – # of log blocks associative with a data block
• N = Log block set = 1 block

§ TEST3-2 - # of data blocks associative with a log block set
• M = Data block set = 3 block

§ TEST 4 - # of log blocks
• 4 log blocks

Experimental Tests on Real Devices (cont’d)

v TEST3/4 on Transcend 4G MLC
v (# data blocks : # of block blocks) = M:N

§ TEST3-1 – # of log blocks associative with a data block
• N = Log block set = 1 block

§ TEST3-2 - # of data blocks associative with a log block set
• M = Data block set = 3 block

§ TEST 4 - # of log blocks
• 4 log blocks

v TEST3 on Transcend 4G MLC

Experimental Tests on Real Devices (cont’d)

100
120
140
160
180

La
te

nc
y

(m
s)

TEST3-1

80

100

120

140

F
ir

st
 m

e
rg

e

TEST3-2

0
20
40
60
80

0 100 200 300

La
te

nc
y

(m
s)

Write Request

0

20

40

60

80

(0~1) (0~2) (0~3) (0~4) (0~5) (0~6)
F
ir

st
 m

e
rg

e

Experimental Tests on Real Devices (cont’d)

v TEST3 on Transcend 4G MLC

100

120

140

160

180

L
a
te

n
cy

 (
m

s)

TEST4 (n=4)

100

120

140

160

180

L
a
te

n
cy

 (
m

s)

TEST4 (n=5)

0

20

40

60

80

100

0 100 200 300

L
a
te

n
cy

 (
m

s)

Write Request

0

20

40

60

80

100

0 100 200 300

L
a
te

n
cy

 (
m

s)
Write Request

v Why does two separate regions exist?
§ Samsung 1G SLC, SKY digital 1G SLC
§ Generally, FAT filesystem is used for USB flash drives
§ FAT filesystem

• FAT area
– Frequently accessed and modified

• Data area
– Sequentially accessed and rarely modified

Experimental Tests on Real Devices (cont’d)

Log-block mapping

Block-level mapping

Identification of the Mapping Scheme
new Classification of Major Mapping Schemes

MSBS(modifed Block-level mapping)

TEST4
number of
log blocks

Lexar(Block-level Mapping)

2

TEST1
average merge

cycle(N)

P/2

FMAX(modifed Block-level mapping)

BAST(Hybrid mapping)

P
2(3) x P

Page-level mapping

FAST, Superblock(Hybrid mapping)

Above
2(3) x P

FMAX

BAST

B/2

< 20% of
B

Address mapping

FMAX2(modifed Block-level mapping)

Superblock(Hybrid mapping)

Page-level mapping

FAST, Superblock(Hybrid mapping)

Page-level mapping

above
threshold

FAST, Superblock(Hybrid mapping)

below
threshold

BAST

TEST2
average
merge

cycle(N)

FMAX2

FAST

Super block1 < M <B

TEST3
block

associativity
(M:N)

M = B

TEST3
block

associativity
(M:N)

< 20% of
B

M = 1

v What kind of Mapping is used in each block?
§ Write pages in the following sequences for each block

(e.g. if total # of pages per block is 64,
then write the same page 64x7 times for each block)

{ 0,0,...,0, 64,64,...,64, 128,128,…,128, 192,192,...,192, … }

§ For each sequence, get the average merge cycle
• Merge cycle = the # of page write requests between the nth

merge operation and the (n+1)th merge operation

§ Partition whole area into sub-areas, each of which consists of
consecutive blocks of same average merge cycle

Identification of the Mapping Schemes
new Test Methods 1

Block 0 Block 1 Block 2 Block 3

v What kind of Mapping is used in each block?
§ Write pages in the following sequences for each block

(e.g. if total # of pages per block is 64,
then write the same page 64x7 times for each block)

{ 0,0,...,0, 64,64,...,64, 128,128,…,128, 192,192,...,192, … }

§ For each sequence, get the average merge cycle
• Merge cycle = the # of page write requests between the nth

merge operation and the (n+1)th merge operation

§ Partition whole area into sub-areas, each of which consists of
consecutive blocks of same average merge cycle

Block 0 Block 1 Block 2 Block 3

vWhat Mapping for each block?
For each sequence (P: total # of pages per block),
switch(average merge cycle)

Case 1: the Block-level mapping
Case 2: the modified Block-level mapping, Lexar,
Case P/2: the modified Block-level mapping, MSBS,
Case P: the modified Block-level mapping, FMAX, or

the Hybrid mapping, BAST, are used
Case 2(or 3) x P:

the modified Block-level mapping, FMAX2, or
the Hybrid mapping, Superblock,

Default: Unknown
the Page-level mapping or
the Hybrid mappings, FAST / Superblock,

Identification of the Mapping Schemes
new Test Methods 1

vWhat Mapping for each block?
For each sequence (P: total # of pages per block),
switch(average merge cycle)

Case 1: the Block-level mapping
Case 2: the modified Block-level mapping, Lexar,
Case P/2: the modified Block-level mapping, MSBS,
Case P: the modified Block-level mapping, FMAX, or

the Hybrid mapping, BAST, are used
Case 2(or 3) x P:

the modified Block-level mapping, FMAX2, or
the Hybrid mapping, Superblock,

Default: Unknown
the Page-level mapping or
the Hybrid mappings, FAST / Superblock,

Identification of the Mapping Schemes

new Test Methods 2

vPage-level mapping?
§ For each block with unknown address mapping

• Write the first page of the block N times
• If the address mapping for block 0 is unknown,
then write page 0 N times: { 0,0,...,0}

• if the average merge cycle > threshold(e.g.:0.2 x N),
then the Page-level mapping
else the Hybrid mapping, FAST / Superblock is used

§ Partition whole area into sub-areas, each of which
consists of consecutive blocks of same average
merge cycle

N= number of whole pages

vPage-level mapping?
§ For each block with unknown address mapping

• Write the first page of the block N times
• If the address mapping for block 0 is unknown,
then write page 0 N times: { 0,0,...,0}

• if the average merge cycle > threshold(e.g.:0.2 x N),
then the Page-level mapping
else the Hybrid mapping, FAST / Superblock is used

§ Partition whole area into sub-areas, each of which
consists of consecutive blocks of same average
merge cycle

N= number of whole pages

v Log block associativity
§ # of data blocks : # of log blocks = M : N
§ Assumption:

N = (the average merge cycle / # of pages per block)
through the Test Method 1&2

v TEST 3
§ Find a data block set associated with a log block set
§ Each set have to have One and only one representative

element
§ Make all the data block sets, i.e., disjoint sets with

UNION-FIND algorithm
1. Make each data block a set
2. For each two set, test if the two representative

elements belong to same log block set
1. If yes, UNION the two sets

3. During the step 2, UNION’s happen, then goto step 2
§ Find M, # of data blocks associated with a log block set

Identification of the Mapping Schemes
new Test Methods 3

v Log block associativity
§ # of data blocks : # of log blocks = M : N
§ Assumption:

N = (the average merge cycle / # of pages per block)
through the Test Method 1&2

v TEST 3
§ Find a data block set associated with a log block set
§ Each set have to have One and only one representative

element
§ Make all the data block sets, i.e., disjoint sets with

UNION-FIND algorithm
1. Make each data block a set
2. For each two set, test if the two representative

elements belong to same log block set
1. If yes, UNION the two sets

3. During the step 2, UNION’s happen, then goto step 2
§ Find M, # of data blocks associated with a log block set

v Log block associativity
§ # of data blocks : # of log blocks = M : N
§ Assumption:

N = (the average merge cycle / # of pages per block)
through the Test Method 1&2

v TEST 4 : Number of log blocks
§ The # of data block set = (the total # of data block / M)
§ the total # of log block, L = the # of data block set * N
§ If M:N = 1:1 and L < the threshold(20% of data blocks),

then BAST
else FMAX

Identification of the Mapping Schemes
new Test Methods 4

v Log block associativity
§ # of data blocks : # of log blocks = M : N
§ Assumption:

N = (the average merge cycle / # of pages per block)
through the Test Method 1&2

v TEST 4 : Number of log blocks
§ The # of data block set = (the total # of data block / M)
§ the total # of log block, L = the # of data block set * N
§ If M:N = 1:1 and L < the threshold(20% of data blocks),

then BAST
else FMAX

Conclusion & Further Issues

v Each USB flash device has its own mapping algorithm
v According to the address mapping algorithms,

§ Performance differs

v What about the SSD?
v Flash Drive/SSD abstraction is possible?

Questions ?

Thank you !

