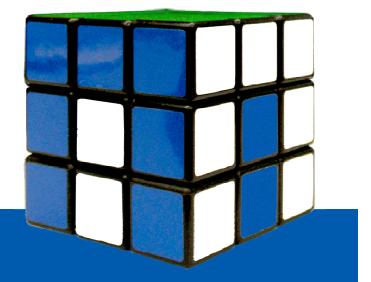


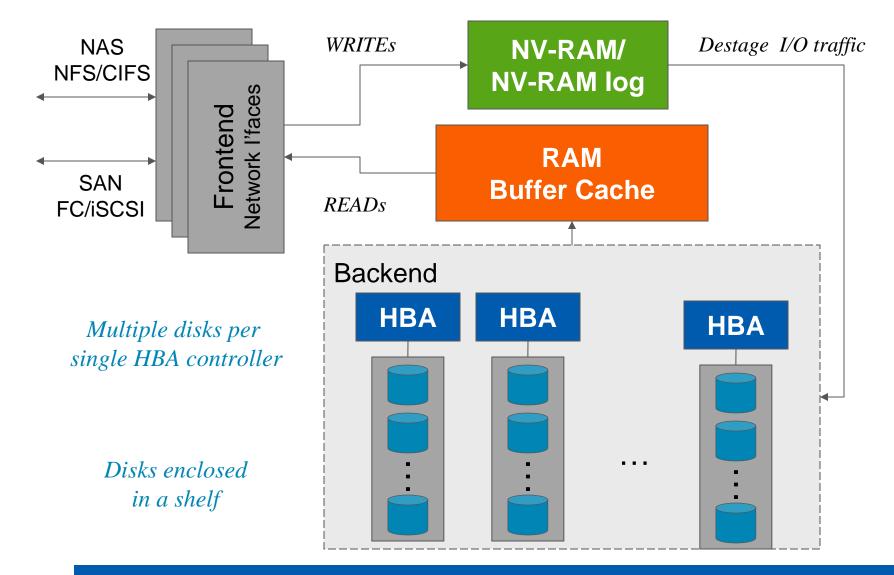
Go further, faster[™]

Flash memory SSDs in Enterprise Storage Systems

Jiri Schindler Advanced Technology Group

v. 1.3


- NetApp
 - maker of large-scale unified (NAS/SAN) storage systems
- Me
 - technical staff at the Advanced Technology Group
 - under the CTO office
 - explorations with 2-5 year product horizon
- Disclaimer
 - the views presented here are primarily my own; they should not be taken as the company's official views or positions on the subject matter discussed herein


- Basics of Enterprise Storage Systems (ESS)
- Replacing disk drive with Flash-memory SSD
- Designing SSDs for ESS
- Concluding remarks & Design Challenge

Enterprise Storage Systems Basics

Enterprise Storage Systems (ESS)

Enterprise vs. Desktop Environments

- Shared back-end components & interconnect
 - single HBA peaks around 15-20k IOPS
 - a single device can deliver 100-600 IOPS
 - Imit the number of HDD devices –primary reason is fault isolation

back-end design typically balanced for HDD IOPS

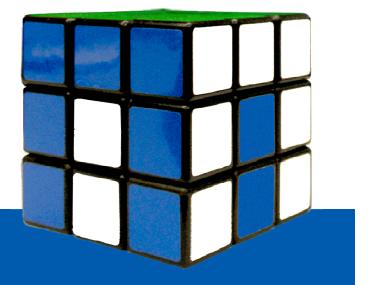
- back-end FC-AL interconnect
 - FC loop peaks at 8 Gbps ≅ 700-800 MB/s
 - a single HDD device can deliver >120 MB/s

back-end does not usually scale for aggregate BW

Enterprise vs. Desktop Environments

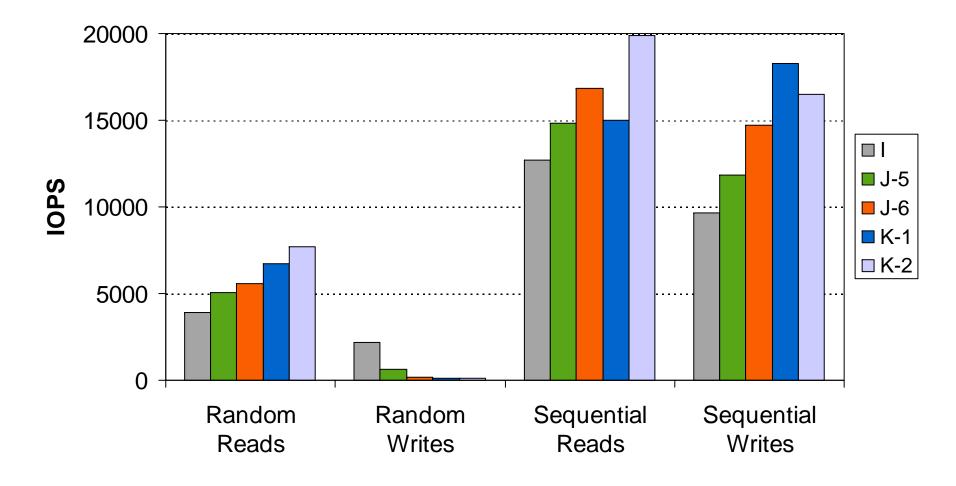
- Data durability
 - writes first end up in NV-RAM
 - different implementations & organizations
 - data sent to device must end up on the media to guarantee consistency & forward progress
 - systems typically disable HDD on-board caches
 - setup through SCSI mode pages/SATA commands
 - finer-grain control via specific commands
 - SCSI command to write-out a range of LBNs
 - SATA flush (whole) cache command
 - NV-RAM mostly solved (but expensive) problem
 - opportunities for FLASH memory

Enterprise vs. Desktop Environments


- Device writes exhibit different access patterns
 - bursts of high-write activity
 - NV-RAM accumulates data until a limit reached
 - capacity limits
 - write-pending limits
 - de-stage en-masse to back-end disks
 - reads and writes still intermixed
 - Read/Modify/Write for update in-place RAID
 - disk partitions/slices belong to different volumes
 - different volumes can be de-staged at different times

- Data scrubbing/verification
 - all blocks on the media are periodically read to verify that data is correct & device is responsive
 - SCSI command set support w/ READ VERIFY
 - media accessed, but no data xfer-ed on the bus
 - devices are usually not completely "idle"
- Storing extra info with data
 - 520 bytes per sector favored over 512
 - Iost-write protection, checksum, context info …
 - T10 (SCSI Spec) DIF extensions
 - proposal to allow for end-to-end data checks

Replacing hard-disk drives with Flash memory-based SSDs



A Natural Fit?

- Interface and form-factor compatibility
 - SATA & FC today, SAS making in-roads
 - most storage systems today use 3.5" form-factor
 - 2.5" SFF likely to gain market-share in the near future
- Performance advantages over HDDs
 - \$/(Read) IOPS, Watts/IOPS, ...
- However, there are other system aspects to consider...
 - more on this later
- Comparison of cost-effective "enterprise" SSDs
 - 20-30 \$/GB street-price
 - SLC NAND Flash memory, SATA interface, 2.5" SFF

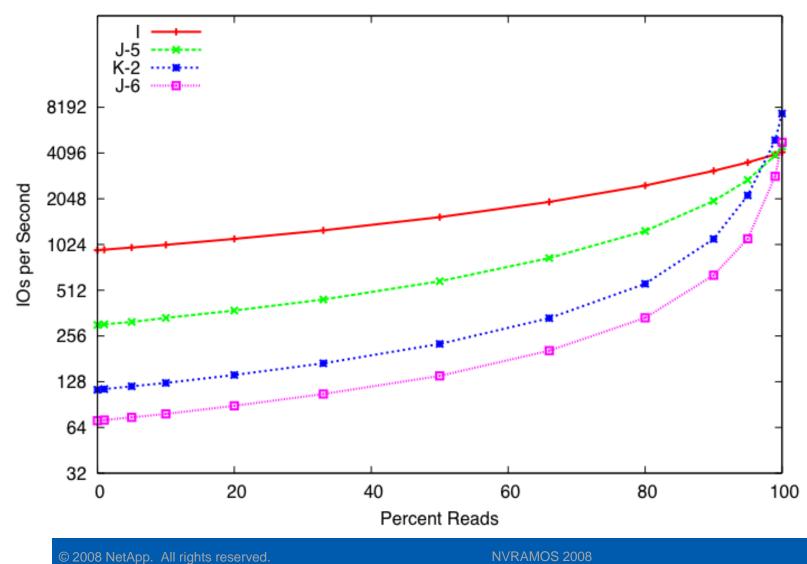
IOPS for 4KB accesses, 16 threads

Random 4/4.5KB Read IOPS, 16 Threads

- Recall, the additional per-block context information
 - 8 bytes for each 512 bytes
 - if 520 BPS unavailable, store context info in the 9th sector
 - other ways to reduce the wasted space exist

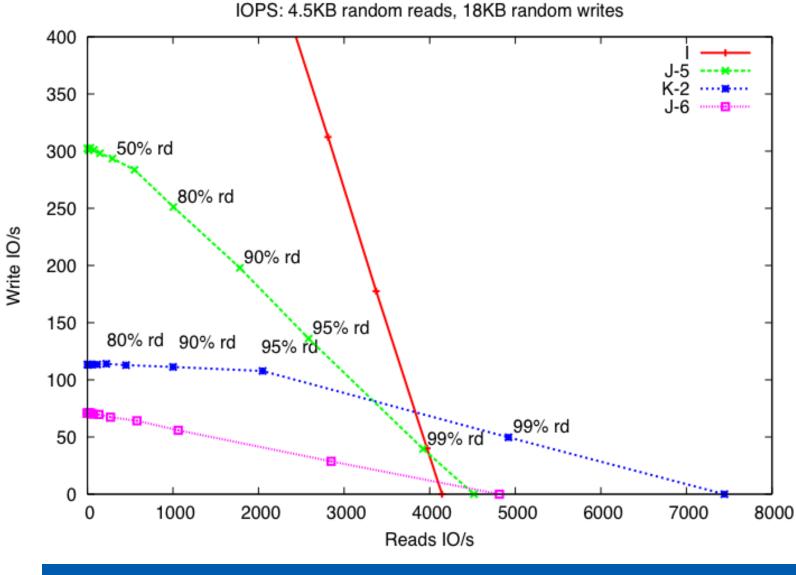
Device	4KB	4.5KB	Diff
Ι	3208	3214	0%
K-1	6723	6357	-5%
K-2	7695	7416	-4%
J-5	5056	4490	-11%
J-6	5548	4721	-15%

Non-power-of-two I/O size impacts READ performance


Random 4/4.5KB Write IOPS, 16 Threads

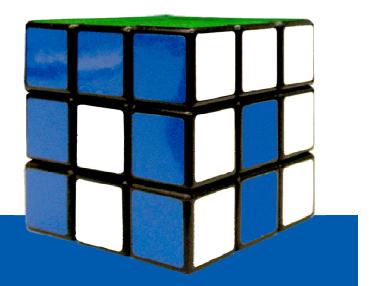
Misaligned writes

Device	4KB	4.5KB	Diff
I	2207	2198	0%
K-1	128	127	0%
K-2	113	110	-3%
J-5	622	489	-21%
J-6	144	116	-19%


The impact on WRITEs can be bigger than for READs

Reads vs. Writes Performance

IOPS: 4.5KB random reads, 18KB random writes



Summary of Observations

- Excellent Read IOPS
 - 10-100x better than HDD
- Large disparity between Read and Write IOPS
 ratio ranges between 1.5 to ~8
- Few Writes have large impact on Read IOPS
 - pure read vs. read-mostly workloads
- Mis-alignment/non-power-of-two size
 - impact between 0% and up to 20 %

ESS-class SSDs

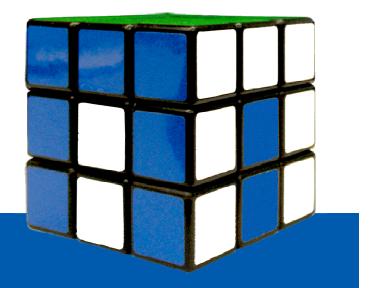
Readying SSDs for the ESS

- Basic premise
 - ESS HW architectures evolve slowly
 - easier to adapt individual devices
 - Flash-based SSDs are still a nascent technology
- Trade off read perf. for better write performance
 - large Read IOPS highlights interconnect limits
 - 4 SSDs can easily saturate a single HBA
 - better support for (potentially) bursty write behavior
 - faster write out of data will increase I/O throughput
- Limit impact of writes on read-mostly workloads
 - "adaptation" of Amdahl's law

Readying SSDs for the ESS cont'd

- Full support of enterprise-class interconnects
 - features, not speed
 - SAS likely to displace FC as device connection
 - Iower cost, switched architecture
- Ensure data stability for WRITEs
 - may design alternatives
 - no cache
 - write-through cache behavior
 - cache flush commands
 - stable cache
- Efficient request queueing support
 - ESS can keep device queues filled

Readying SSDs for the ESS cont'd


- Efficient handling of per-block context info
 - support for larger than 512 byte sector sizes
 - allow for more than 64 bytes per 2K page
 - expose additional bytes through the i'face
 - alternative: efficient handling of misaligned I/Os
 - if having additional per-page bytes is infeasible
- ESS systems can support larger sectors
 - HDDs want to go to 4KB native sector size
 - NetApp DataONTAP® uses 4KB sector
 - 4096 bytes of payload + 64 bytes of context info

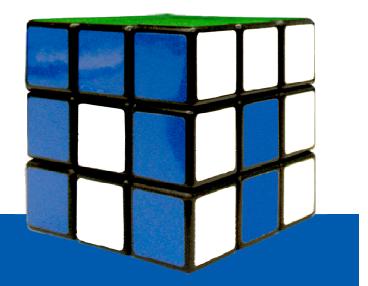
ESS Are All About Preventing Data Loss

- Device reliability
 - need to understand device failure characteristics
 - and express them in well-understood metrics
 - ESS know how to handle failures: RAID
 - the RAID-level trade-offs are well understood
- Anticipating looming device failure
 - early warning of device failure is important
 - disk S.M.A.R.T. is largely unsuccessful

Concluding Remarks

© 2008 NetApp. All rights reserved.

SSD Design Challenge: New FTL


- Lots of previous published work
 - mostly targeting desktops/PDAs
 - Iargely not applicable for a variety of reasons
- Enterprise workloads are different
 - bursty writes can streamline materializations
 - Iends itself to log-structured FS organization
 - NetApp DataONTAP specific feature
 - data never overwritten
 - systems are rarely truly "idle"
- Fine-grain control over materialization
 - allows ESS systems to move forward

SSD Design Challenge: New Technology

- Power-loss protection
 - preserve non-materialized mappings
 - capacitor to power emergency writes to FLASH
 - store core info in non-volatile memory e.g., FRAM
- Address read-disturb issue & "bit rot"
 - do we need scrubbing or is it harmful?
- Provide additional per-page storage area
 - exposed through storage interface
- Expose information about device health
- Full support of storage protocol features

Discussion

© 2008 NetApp. All rights reserved.