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NAND Flash Memory Overview
❖ The Good

• Fast random reads
• Low power utilization
• No moving parts

❖ The Bad
• Writing involves erasing/programming
• Reliability is dependent on usage and time

- Endurance
- Retention
- Raw bit-error rate (RBER)

❖ Must overcome reliability concerns without hurting performance 
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Objectives
❖ Improve reliability

• Control all writes to flash

• Put mechanisms in place to deal with increasing RBER
- Dynamic mechanisms
- Trade space and performance for increased fault tolerance

• Error handling beyond bit errors

❖ Erasure codes provide great fit 
❖ Maintain good performance using erasure codes

• Stage writes in other NVRAM or BB-RAM

• Write across as many chips as possible

• Write sequentially to each device
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Flash Media Reliability
❖ Reliability is typically given by RBER, retention and endurance 

❖ Each changes with:

• Manufacturer

• Bits per cell (i.e. SLC and MLC)

• Use

• Time

❖ Here, we consider the relationship between use and RBER

• Still figuring out use/time dependency on RBER

❖ Failure of other components may also lead to data loss

• Chips, controllers, etc.
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RBER as a Function of Erase Cycles
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❖ Use has a dramatic effect on RBER!
❖ Data taken from Intel-Micron study
❖ Performed regression over data to extrapolate
❖ 4 devices: (1)10K cycles, (2) 5K cycles, (1) unspecified



Architecture 
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Threats in this Architecture
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Options for Handling Errors
❖ Error Correcting Codes (ECC)

• Correct e bit errors
• Can detect 2e bit errors
• Generally computed in controller (or interface) 
• Applied to sectors or pages

❖ Hashing
• Easy to compute
• Can detect any errors with very high probability

❖ Erasure Coding
• Applied at coarser granularity than ECCs (i.e. multiple pages)
• Can correct known errors via ECC or hash
• Detect errors with very high probability
• Easily re-code if implemented in SW
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Challenges: Erasure Coding in Flash
❖ Block management

•  Given encoding, determine addressable data blocks
❖ Writing erasure coded data

• Balance writes across banks
• Properly handle parity updates

❖ Rebuilding lost data
• Localize recovery operations

❖ Graceful degradation
• Provide ability to change encoding as RBER increases

❖ Failover
• Determine where to put rebuilt data
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any bank
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1 parity update per 
write to a bank
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Block Groups
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Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7
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data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}
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Writing Data using Block Groups
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Writing Data using Block Groups
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Writing Data using Block Groups
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A
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parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}
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B0,0 B1,0 B2,0 B3,0 B4,0 B5,0 B6,0 B7,0

B0,1 B1,1 B2,1 B3,1 B4,1 B5,1 B6,1 B7,1

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

parity map← {3 = 0⊕ 1⊕ 2, 7 = 4⊕ 5⊕ 6}
data map← {0→ 3, 1→ 3, 2→ 3, 4→ 7, 5→ 7, 6→ 7}

Graceful Degradation
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parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

❖ Block groups allow us to change the encoding
❖ Two encodings: current and old
❖ All block groups with old encoding are more likely to be cleaned

.

.

.

Old encoding



Recovering Page and Block Errors 
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Failover
❖ Page and block errors

• Write data to current block group

• Try to use page or block again once block group is cleaned

• If we get a write error, then mark page or block as bad

❖ Can deal with bank errors with spares 
❖ Spare-less component errors

• Try to reconstruct data

• Mark banks under failed components as bad

• Reform block groups without bad banks
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Performance
❖ Based on flash simulator from NetApp

• 4 DMA channels/card (Libra card has 2)
• 2 interfaces/card
• 2 DIMMs/interface
• 2 banks/DIMM (16 total banks)
• 64 blocks/bank
• 64 pages/block
• 1.2 ms (erase), 0.2 ms (prog), 0.025 ms (read)

❖ 2 cards connected to a host
❖ All functionality resides in driver on the host
❖ Evaluate write performance/reliability

• No erasure code
• 15+1 (across 16 banks)
• 3+1 host-level, 3+1 iface level (across 16 banks)
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Erasure Coding and Reliability

17

❖ Increasing page-level ECC decreases RBER
• May not be possible on-the-fly

❖ Easier to keep page-level ECC and change erasure code
• Up-code when expected RBER gets too high

Upcode 
to 15+1 Upcode 

to multi-level
scheme



Performance 
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❖ Write size max is number of data pages in a stripe
❖ Rebuild performance 

• 3.41 MB/s (15+1) , 16.52 MB/s (3+1)
❖ Current encoder does not compute full stripe parity

Due to 4 
DMA channels



Other Challenges and Concerns
❖ Cleaning

❖ Wear leveling with block groups

❖ Bad block management

❖ Reliability and performance after failover 

❖ Smart write policies 

• Coalesce page updates into single parity computation

• Exploit parallelism in the hierarchy
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Questions?
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