
Building Reliable NAND Flash
Memory Storage Systems

Kevin M. Greenan, Ethan L. Miller and Darrell D.E. Long
UCSC

Thomas Schwarz
Santa Clara University

Kaladhar Voruganti, Garth Goodson and Jon Elerath
NetApp

NAND Flash Memory Overview
❖ The Good

• Fast random reads
• Low power utilization
• No moving parts

❖ The Bad
• Writing involves erasing/programming
• Reliability is dependent on usage and time

- Endurance
- Retention
- Raw bit-error rate (RBER)

❖ Must overcome reliability concerns without hurting performance

2

Objectives
❖ Improve reliability

• Control all writes to flash

• Put mechanisms in place to deal with increasing RBER
- Dynamic mechanisms
- Trade space and performance for increased fault tolerance

• Error handling beyond bit errors

❖ Erasure codes provide great fit
❖ Maintain good performance using erasure codes

• Stage writes in other NVRAM or BB-RAM

• Write across as many chips as possible

• Write sequentially to each device

3

Flash Media Reliability
❖ Reliability is typically given by RBER, retention and endurance

❖ Each changes with:

• Manufacturer

• Bits per cell (i.e. SLC and MLC)

• Use

• Time

❖ Here, we consider the relationship between use and RBER

• Still figuring out use/time dependency on RBER

❖ Failure of other components may also lead to data loss

• Chips, controllers, etc.

4

RBER as a Function of Erase Cycles

5

❖ Use has a dramatic effect on RBER!
❖ Data taken from Intel-Micron study
❖ Performed regression over data to extrapolate
❖ 4 devices: (1)10K cycles, (2) 5K cycles, (1) unspecified

Architecture

6

Driver

... ...

Interface

Interface

Banks

Banks

Banks

Banks

...

...

DIMMS

DMA Engines
DMA Rings

PCI
Bus
...

Host

Card

Flash Translation
Layer

File System

Byte
Addr.

NVRAM

Threats in this Architecture

7

Host

Card

Iface Iface

DIMM

Bank

DIMM

Bank Bank Bank

Block Block ...

DIMM

Bank

DIMM

Bank Bank Bank

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

SW/HW errors
Power outage

Error on PCI bus
Whole card outage

SW Error

HW Error
Chip outage

Read/write disturbs
Defects

Options for Handling Errors
❖ Error Correcting Codes (ECC)

• Correct e bit errors
• Can detect 2e bit errors
• Generally computed in controller (or interface)
• Applied to sectors or pages

❖ Hashing
• Easy to compute
• Can detect any errors with very high probability

❖ Erasure Coding
• Applied at coarser granularity than ECCs (i.e. multiple pages)
• Can correct known errors via ECC or hash
• Detect errors with very high probability
• Easily re-code if implemented in SW

8

Challenges: Erasure Coding in Flash
❖ Block management

• Given encoding, determine addressable data blocks
❖ Writing erasure coded data

• Balance writes across banks
• Properly handle parity updates

❖ Rebuilding lost data
• Localize recovery operations

❖ Graceful degradation
• Provide ability to change encoding as RBER increases

❖ Failover
• Determine where to put rebuilt data

9

Host

Card

Iface Iface

DIMM

Bank

DIMM

Bank Bank Bank

DIMM

Bank

DIMM

Bank Bank Bank

7+1 RAID4

D0 D1 D2 D3 D4 D5 D6 P0

D0⊕D1⊕D2⊕D3⊕D4⊕D5⊕D6 = D7

Component Protection

10

Can sustain the loss of
any bank

Requires data from 7
banks to recover 1

1 parity update per
write to a bank

Host

Card

Iface Iface

DIMM

Bank

DIMM

Bank Bank Bank

DIMM

Bank

DIMM

Bank Bank Bank

Requires data from 3
banks to recover 1

Can sustain the loss of
any bank under an

interface

Component Protection

10

1 parity update per
write to a bank

D0 D1 D2 P0 D3 D4 D5 P1

3+1 RAID4

D0⊕D1⊕D2 = P0

D3⊕D4⊕D5 = P1

Host

Card

Iface Iface

DIMM

Bank

DIMM

Bank Bank Bank

DIMM

Bank

DIMM

Bank Bank Bank

3 parity updates per
write to a bank

Can sustain the failure
of an interface and many
bank failure combinations

Component Protection

10

D0 D1 D2 P0 P1 P2 P3 P4

RAID 1

3+1 RAID 4

D0⊕D1⊕D2 = P0

D0⊕D1⊕D2 = P4

D0 = P1

D1 = P2

D2 = P3

Block Groups

11

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

B0,0 B1,0 B2,0 B3,0 B4,0 B5,0 B6,0 B7,0

B0,1 B1,1 B2,1 B3,1 B4,1 B5,1 B6,1 B7,1

B0,N B1,N B2,N B3,N B4,N B5,N B6,N B7,N

...

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

All writes go to
current block group

An erasure code instance is
associated with a block group

One block from
each bank is placed

in a block group

Writing Data using Block Groups

12

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

P

NVRAM

Current block
group

P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P6,0 P7,0

Writing Data using Block Groups

12

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

P

NVRAM

Current block
group

P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P6,0 P7,0

⊕ PA

Writing Data using Block Groups

12

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

P

NVRAM

Current block
group

Write(A)

P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P6,0 P7,0

⊕ PB C D⊕ ⊕

DWrite(B)C

⊕ PA

A

Writing Data using Block Groups

12

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

P

NVRAM

Current block
group

P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P6,0 P7,0

⊕ PB C D⊕ ⊕

GWrite(E)F

⊕E F G⊕⊕ P ⊕ PA

B C DA

Writing Data using Block Groups

12

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

P

NVRAM

Current block
group

P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P6,0 P7,0

⊕ PB C D⊕ ⊕ ⊕E F G⊕⊕ P⊕ PA

B C DA

Writing Data using Block Groups

12

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

E F G P

NVRAM

Current block
group

B0,0 B1,0 B2,0 B3,0 B4,0 B5,0 B6,0 B7,0

B0,1 B1,1 B2,1 B3,1 B4,1 B5,1 B6,1 B7,1

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

parity map← {3 = 0⊕ 1⊕ 2, 7 = 4⊕ 5⊕ 6}
data map← {0→ 3, 1→ 3, 2→ 3, 4→ 7, 5→ 7, 6→ 7}

Graceful Degradation

13

parity map← {7 = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6}
data map← {0→ 7, 1→ 7, 2→ 7, 3→ 7, 4→ 7, 5→ 7, 6→ 7}

❖ Block groups allow us to change the encoding
❖ Two encodings: current and old
❖ All block groups with old encoding are more likely to be cleaned

.

.

.

Old encoding

Recovering Page and Block Errors

14

Host

Card

Iface Iface

DIMM

Bank

DIMM

Bank Bank Bank

DIMM

Bank

DIMM

Bank Bank Bank

D0 D1 D2 P0 D3 D4 D5 P1

B0,i B1,i B2,i B3,i B4,i B5,i B6,i B7,i

3+1 RAID4

Block Group
with Error

D0⊕D1⊕D2 = P0

D3⊕D4⊕D5 = P1
B0,i B2,i B3,i R1,i⊕ ⊕ Write to current

block group

Failover
❖ Page and block errors

• Write data to current block group

• Try to use page or block again once block group is cleaned

• If we get a write error, then mark page or block as bad

❖ Can deal with bank errors with spares
❖ Spare-less component errors

• Try to reconstruct data

• Mark banks under failed components as bad

• Reform block groups without bad banks

15

Performance
❖ Based on flash simulator from NetApp

• 4 DMA channels/card (Libra card has 2)
• 2 interfaces/card
• 2 DIMMs/interface
• 2 banks/DIMM (16 total banks)
• 64 blocks/bank
• 64 pages/block
• 1.2 ms (erase), 0.2 ms (prog), 0.025 ms (read)

❖ 2 cards connected to a host
❖ All functionality resides in driver on the host
❖ Evaluate write performance/reliability

• No erasure code
• 15+1 (across 16 banks)
• 3+1 host-level, 3+1 iface level (across 16 banks)

16

Erasure Coding and Reliability

17

❖ Increasing page-level ECC decreases RBER
• May not be possible on-the-fly

❖ Easier to keep page-level ECC and change erasure code
• Up-code when expected RBER gets too high

Upcode
to 15+1 Upcode

to multi-level
scheme

Performance

18

❖ Write size max is number of data pages in a stripe
❖ Rebuild performance

• 3.41 MB/s (15+1) , 16.52 MB/s (3+1)
❖ Current encoder does not compute full stripe parity

Due to 4
DMA channels

Other Challenges and Concerns
❖ Cleaning

❖ Wear leveling with block groups

❖ Bad block management

❖ Reliability and performance after failover

❖ Smart write policies

• Coalesce page updates into single parity computation

• Exploit parallelism in the hierarchy

19

Questions?

20

