The Design of a Flash-based Linux
Swap System

Yeonseung Ryu
Myongji University
October, 2008

Contents

[0 Overview of linux Swap System
B How does the swap system operates?
B What are the problems of flash based swap system?

[0 New Swap System
B Segment-based swap space management and fast start-up
B Block-aligned read-ahead swap-in scheme
B Performance evaluation

Introduction

O All modern general-purpose OS use virtual memory techniques. Most
of virtual memory implementations divide the virtual address space of
an application program into pages; Page size is usually 4KB in linux.

[0 When an application executes, its contents (code and data) are loaded
on demand into page frames of main memory.

0 The stack and heap of the process are created in the main memory on
demand.

RAM Kernel

NAND Kernel

| |
'.‘.' d .IHI. s

— User File System Swap Paririon ——
3

Introduction

O

When the free memory is almost used up, the Linux kernel performs
page frame reclaiming. Page frame reclaiming procedure picks up victim
page frames and makes them free.

If a victim page frame is mapped to a portion of a disk file and the page

is dirty, the kernel writes the content of the page frame to the
corresponding disk file.

If a victim page frame is not mapped to a disk file like stack and heap
(it is called as anonymous pages), the kernel saves the page contents in
a dedicated disk partition (or a disk file) called swap area.

Linux Swap System

slot invalid slot.

task
page
table ceee RAM
pgd >
pte swap out swap in
y Swap Area
“ sesss (file or
invalid '\ partition)
slot Swap slot
0 A swap area consists of a sequence of swap slots: 4KB blocks used to
contain a swapped-out page.
[0 When an anonymous page is selected for page reclamation, it is swapped
out to the swap area.
0 Swap-in operation occurs when a process attempts to address a page
that has been swapped out.
0 When a page is swapped-in from swap area to main memory, we call its

5

Swap-out

O

O

Linux swap system has been optimized to reduce disk seek time.

In order to minimize disk seek time, the kernel tries to store
swap-out pages in contiguous slots and thus allocates slots from the
last allocated slot.

This simple approach, however, can increase the average seek time
during swap-in operations because many occupied swap slots may be
scattered far away from one another.

Swap-out
]

00 In order to address this problem 10000 |
linux kernel restarts allocation from wane
the beginning of the swap area noue
whenever 256 free slots were alloca-
ted after the last restart from the
beginning of the swap area.

7000

6000

5000

4000

3000

swap slot number

2000

O So, kernel uses slots again that
became free due to swap-in requests. 1000

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

swap—oul. trace sequence

O However, when flash memory is used as swap device, reusing these
free slots requires erase operations.

[0 Moreover, since flash memory does not require seek operation, kernel
does not need to restart allocation from the beginning of the swap
area.

Swap-in
]

OO0 A swap-in operation tries to read contiguous eight pages including the
requested one. Why read-ahead ?

B |ocality property : neighbor pages tend o be accessed soon.
B Seek fime: some consecutive pages are read at a time.

OO0 When flash memory is used as swap device, however, swap-in operation
with read-ahead can invalidate the swap slots that lie over two erase
blocks.

O Inorder to reuse these eight slots to store swapped-out pages, we
heed two block erase operations.

Pages swapped-in

swap-in with read ahead
request - e o
L e -
s "
Block n Block n+1

Linux swap-in

New swap system

[0 Considerations

B Fast start-up

B Minimizing garbage collection cost

B Wear-leveling

fast start-up ?

0 When the system is booted, kernel needs to clean entire swap space
since the previous data in the swap area are obsolefte.

0 This cleaning operation makes system start-up time longer..

0 Worst cleaning time vs. swap area size

block size: 128KB
block erase time: 1.5ms

30000
N\

25000 /<’) 25 seconds

20000 - -

15000

10000 /
5000

erase time (ms)

512M 16 1.56 26

swap area size

Swap space management

[0 Patent: Segment based swap space management, October,
2008

B Swap space is divided into segments.

Swap area (Flash memory)

\;'_]

slot

|
erase block

|
segment

Segment-based swap space management
|

O Each segment consists of a set of erase blocks.

[0 Each segment has a segment header which contains segment status
(used/free) and erasure counter.

Segment 1 Segment2 ... Segment N
[\ \ | "1
— 7,
Block Segment Header

O A segment is an unit of erase. That is, all the blocks in a segment
are erased fogether at a time.

0 When the segment is erased, segment status becomes free and
erasure counter is increased by 1.

Segment-based swap space management
|

0 During the start-up, kernel scans all segment headers and
constructs data structure about segments in the RAM .

O After constructing segment data structure, kernel determines the
humber of segments which must be erased by start-up procedure.

B If thereisagiven limit of start-up time, start-up procedure can
clean only a few segments.

B Length of start-up time vs. amount of free swap space

O If the kernel does not clean all invalid segments, remaining invalid
segments will be erased by garbage collection process afterwards.

OO0 This space management scheme can limit start-up time.

Segment-based swap space management

=

We are studying ...

Segment size

Start-up time limit

How many segments are erased by start-up procedure
Garbage collection algorithm

Wear-leveling

etc

Block-aligned read-ahead swap-in

[0 Patent: Read-ahead swap-in method considering flash
memory erasure block, May. 2008

Pages swapped-in

swap-in with read ahead Pages swapped-in swap-in
request A with read ahead request
L N A
P
i J%
L I - " e = -~
T Ty 'l 'l
Block n Block n+1 Block n Block n+1
Linux swap-in Block-aligned swap-in

0 Proposed scheme reads ahead pages that lie in the same
block.

B We need only one erase operation to reuse swapped-in slots.

0 By reducing the number of invalid blocks to be erased,
we can decrease the garbage collection (6C) cost.

Analysis of Linux swap I/0 traces

O

In order to evaluate performance, we collected some swap I/0
traces from linux kernel.

Most of all, we want to know the swap-in behaviour. So, we turned
off read-ahead option of swap-in before collecting the traces.

Because we disabled read-ahead option, all swapped-in pages were
loaded on demand and we can examine the pure swap-in behaviour.

We examined if the locality exists in the swap slot accesses due to
swap-in operations.

We found that the temporal/spatial locality exist in the swap-in
references

Locality of Swap-in pattern

[0 These figures show the slot numbers accessed by swap-in operations
of a particular process.

sendmail
6000
_§ 5000 N>
4
E 000
g 3000 —
+ 2000
o re———
% 1000
O C0NMtIINNN000000000000000000000000000PNIIIININI0000000000000000000000000000MNNIIINY
0 20 40 60 80 100 120 140 160 180 200
sequence of swap-in
Xorg
6000
. 5000 o sotoeee
_g 4000 ’0 0““0“ .
2 3000 -
% 2000
" 1000 000e S06® 90006000600 0040000000000000000
0
0 10 20 30 40 50 60 70

sequence of swap-in

Read ahead ??

[0 Due to locality, read-ahead is a good approach to reduce the
disk seek time.

O Flash memory does not require seek time but read-ahead can
result in better performance.

B Read-ahead can decrease the number of page faults

Performance Evaluation

O We have performed trace-driven simulation fo investigate the
performance of read-ahead swap-in schemes and garbage collection
algorithms.

0 Swap-out : allocates slots sequentially

0 Swap-in: read-ahead
B 8 pages by linux swap scheme
B 8 pages by block-aligned scheme
B 16 pages by block-aligned scheme
B 32 pages by block-aligned scheme

O Garbage collection algorithms
B Greedy (GR)
B Cost-Benefit (CB)
B Cost-Age-Time (CAT)

B (Cost Benefit with Age (CBA)

Performance Evaluation

[0 Garbage collection algorithms

Greedy (GR) : selects a block with the largest amount of invalid
slots

Cost-Benefit (CB) : selects a block that maximize the formular:

age-(1—u) e

' qge : the time since the most recent modification i
14+ u . u : the fraction of space occupied by valid slots !

Cost-Age-Time (CAT) : selects a block that maximize the
formular:

1—u 1
. age .
14+u erase count

Cost Benefit with Age (CBA) : selects a block like CB and sorts
valid slots with ages and moves the oldest pages first

20

Performance Evaluation

O

Through the simulation, we measured the following performance
metrics to calculate the garbage collection cost.

B read count
B erase copy count : the number of writes due to GC
B erase count

Garbage collection must copy the valid slots in the victim block to
the free space before erasing it.

Copy operation requires read and write operation.

Garbage collection cost

Cost = read_count + copy_count*10 + erase_count*75

= the write operation is 10 times slower than the read operation
and the erase operation is 75 times slower than the read
operation.

21

read_count

py_count

erase_co

Some Results

60000 -

40000 -

250
200
150
100

50

=
u1
o
(]

e
pd
// e
2000 - e
~
I //
l //
e

erase count

GR CB CAT CBA

: 1 1000 A
20000 -
; 500 1 //
p _ "
' e ra
CB CAT CBA

GR
m | | M|
B read 716_read 732 reac Tlinux read B3 erase M 16_erase W32 erase W linux_erase

00 GC algorithms have little effect.

[0 The number of read-ahead has
little effect.

OO0 Block-aligned read-ahead

outperforms non-block-aligned

read-ahead.
GR CB CAT CBA

B 8_erase_copy 16_erase_copy
W 32_erase_copy B linux_erase_copy

Some Results
A

0 6C Cost

p O Asaresult, GC cost of propo-
s | P o sed block-aligned swap-in
scheme is almost three times
smaller than linux scheme.

400000
300000 -

200000

GC_Cost

100000

0_’,

GR CB CAT CcBA

B2 cost ™16 cost M32 cost ®linux_cost

Conclusions

[0 Segment based swap space management can reduce the
start-up time.

0 Block-aligned read-ahead scheme can reduce the garbage
collection cost.

[0 We are yet studying ..

24

Thank you. .

ysryu@mju.ac.kr

Swap-in
request

26

