
The Design of a Flash-based Linux 
Swap System

Yeonseung Ryu
Myongji University

October, 2008



Contents

o Overview of linux Swap System
n How does the swap system operates?
n What are the problems of flash based swap system?

o New Swap System
n Segment-based swap space management and fast start-up
n Block-aligned read-ahead swap-in scheme
n Performance evaluation

2

o Overview of linux Swap System
n How does the swap system operates?
n What are the problems of flash based swap system?

o New Swap System
n Segment-based swap space management and fast start-up
n Block-aligned read-ahead swap-in scheme
n Performance evaluation



Introduction

o All modern general-purpose OS use virtual memory techniques. Most 
of virtual memory implementations divide the virtual address space of 
an application program into pages; Page size is usually 4KB in linux.

o When an application executes, its contents (code and data) are loaded
on demand into page frames of main memory.

o The stack and heap of the process are created in the main memory on
demand.

o All modern general-purpose OS use virtual memory techniques. Most 
of virtual memory implementations divide the virtual address space of 
an application program into pages; Page size is usually 4KB in linux.

o When an application executes, its contents (code and data) are loaded
on demand into page frames of main memory.

o The stack and heap of the process are created in the main memory on
demand.

3



Introduction

o When the free memory is almost used up, the Linux kernel performs      
page frame reclaiming. Page frame reclaiming procedure picks up victim  
page frames and makes them free. 

o If a victim page frame is mapped to a portion of a disk file and the page 
is dirty, the kernel writes the content of the page frame to the             
corresponding disk file. 

o If a victim page frame is not mapped to a disk file like stack and heap    
(it is called as anonymous pages), the kernel saves the page contents in  
a dedicated disk partition (or a disk file) called swap area. 

o When the free memory is almost used up, the Linux kernel performs      
page frame reclaiming. Page frame reclaiming procedure picks up victim  
page frames and makes them free. 

o If a victim page frame is mapped to a portion of a disk file and the page 
is dirty, the kernel writes the content of the page frame to the             
corresponding disk file. 

o If a victim page frame is not mapped to a disk file like stack and heap    
(it is called as anonymous pages), the kernel saves the page contents in  
a dedicated disk partition (or a disk file) called swap area. 

4



Linux Swap System

Swap Area
(file or 

partition)

task
page 
table

pte

RAM

swap out swap in

invalid
slot

pgd

5

o A swap area consists of a sequence of swap slots: 4KB blocks used to     
contain a swapped-out page.

o When an anonymous page is selected for page reclamation, it is swapped 
out to the swap area.

o Swap-in operation occurs when a process attempts to address a page     
that has been swapped out.

o When a page is swapped-in from swap area to main memory, we call its   
slot invalid slot.

Swap Area
(file or 

partition)invalid
slot Swap slot



Swap-out

o Linux swap system has been optimized to reduce disk seek time.

o In order to minimize disk seek time, the kernel tries to store            
swap-out pages in contiguous slots and thus allocates slots from the  
last allocated slot.

o This simple approach, however, can increase the average seek time   
during swap-in operations because many occupied swap slots may be  
scattered far away from one another. 

o Linux swap system has been optimized to reduce disk seek time.

o In order to minimize disk seek time, the kernel tries to store            
swap-out pages in contiguous slots and thus allocates slots from the  
last allocated slot.

o This simple approach, however, can increase the average seek time   
during swap-in operations because many occupied swap slots may be  
scattered far away from one another. 

6



Swap-out

o In order to address this problem   
linux kernel restarts allocation from 
the beginning of the swap area         
whenever 256 free slots were alloca-
ted after the last restart from the  
beginning of the swap area.

o So, kernel uses slots again that     
became free due to swap-in requests. 

o However, when flash memory is used as swap device, reusing these
free slots requires erase operations.

o Moreover, since flash memory does not require seek operation, kernel
does not need to restart allocation from the beginning of the swap
area.

7

o In order to address this problem   
linux kernel restarts allocation from 
the beginning of the swap area         
whenever 256 free slots were alloca-
ted after the last restart from the  
beginning of the swap area.

o So, kernel uses slots again that     
became free due to swap-in requests. 



Swap-in

o A swap-in operation tries to read contiguous eight pages including  the 
requested one. Why read-ahead ?
n Locality property : neighbor pages tend to be accessed soon.
n Seek time:  some consecutive pages are read at a time.

o When flash memory is used as swap device, however, swap-in operation 
with read-ahead can invalidate the swap slots that lie over two erase  
blocks.

o In order to reuse these eight slots to store swapped-out pages, we 
need two block erase operations.

o A swap-in operation tries to read contiguous eight pages including  the 
requested one. Why read-ahead ?
n Locality property : neighbor pages tend to be accessed soon.
n Seek time:  some consecutive pages are read at a time.

o When flash memory is used as swap device, however, swap-in operation 
with read-ahead can invalidate the swap slots that lie over two erase  
blocks.

o In order to reuse these eight slots to store swapped-out pages, we 
need two block erase operations.

8

Linux swap-in



New swap system

o Considerations 

n Fast start-up

n Minimizing garbage collection cost

n Wear-leveling

o Considerations 

n Fast start-up

n Minimizing garbage collection cost

n Wear-leveling

9



fast start-up ? 

o When the system is booted, kernel needs to clean entire swap space 
since the previous data in the swap area are obsolete.

o This cleaning operation makes system start-up time longer..

o Worst cleaning time vs. swap area size

block size: 128KB
block erase time: 1.5ms

10

0

5000

10000

15000

20000

25000

30000

512M 1G 1.5G 2G

er
as

e 
ti
m
e 

(m
s)

swap area size

block size: 128KB
block erase time: 1.5ms

25 seconds



Swap space management

o Patent: Segment based swap space management, October, 
2008
n Swap space is divided into  segments.

,

Swap area (Flash memory)

11

slot 

erase block

segment

,



Segment-based swap space management

o Each segment consists of a set of erase blocks.
o Each segment has a segment header which contains segment status 

(used/free) and erasure counter.

o A segment is an unit of erase. That is, all the blocks in a segment 
are erased together at a time.

o When the segment is erased, segment status becomes free and 
erasure counter is increased by 1.

o Each segment consists of a set of erase blocks.
o Each segment has a segment header which contains segment status 

(used/free) and erasure counter.

o A segment is an unit of erase. That is, all the blocks in a segment 
are erased together at a time.

o When the segment is erased, segment status becomes free and 
erasure counter is increased by 1.

12



Segment-based swap space management

o During the start-up, kernel scans all segment headers and 
constructs data structure about segments in the RAM .

o After constructing segment data structure, kernel determines the 
number of segments which must be erased by start-up procedure.
n If there is a given limit of start-up time, start-up procedure can 

clean only a few segments.
n Length of start-up time  vs. amount of free swap space

o If the kernel does not clean all invalid segments, remaining invalid 
segments will be erased by garbage collection process afterwards.

o This space management scheme can limit start-up time.

o During the start-up, kernel scans all segment headers and 
constructs data structure about segments in the RAM .

o After constructing segment data structure, kernel determines the 
number of segments which must be erased by start-up procedure.
n If there is a given limit of start-up time, start-up procedure can 

clean only a few segments.
n Length of start-up time  vs. amount of free swap space

o If the kernel does not clean all invalid segments, remaining invalid 
segments will be erased by garbage collection process afterwards.

o This space management scheme can limit start-up time.

13



Segment-based swap space management

o We are studying ...
n Segment size
n Start-up time limit
n How many segments are erased  by start-up procedure
n Garbage collection algorithm
n Wear-leveling
n etc

o We are studying ...
n Segment size
n Start-up time limit
n How many segments are erased  by start-up procedure
n Garbage collection algorithm
n Wear-leveling
n etc

14



Block-aligned read-ahead swap-in

o Patent: Read-ahead swap-in method considering flash 
memory erasure block, May. 2008

o Proposed scheme reads ahead pages that lie in the same 
block.
n We need only one erase operation to reuse swapped-in slots.

o By reducing the number of invalid blocks to be erased,  
we can decrease the garbage collection (GC) cost.

o Patent: Read-ahead swap-in method considering flash 
memory erasure block, May. 2008

o Proposed scheme reads ahead pages that lie in the same 
block.
n We need only one erase operation to reuse swapped-in slots.

o By reducing the number of invalid blocks to be erased,  
we can decrease the garbage collection (GC) cost.

15

Block-aligned swap-inLinux swap-in



Analysis of Linux swap I/O traces

o In order to evaluate performance, we collected some swap I/O 
traces from linux kernel.

o Most of all, we want to know the swap-in behaviour. So, we turned 
off read-ahead option of swap-in before collecting the traces.

o Because we disabled read-ahead option, all swapped-in pages were 
loaded on demand and we can examine the pure swap-in behaviour.

o We examined if the locality exists in the swap slot accesses due to 
swap-in operations.

o We found that the temporal/spatial locality exist in the swap-in 
references

o In order to evaluate performance, we collected some swap I/O 
traces from linux kernel.

o Most of all, we want to know the swap-in behaviour. So, we turned 
off read-ahead option of swap-in before collecting the traces.

o Because we disabled read-ahead option, all swapped-in pages were 
loaded on demand and we can examine the pure swap-in behaviour.

o We examined if the locality exists in the swap slot accesses due to 
swap-in operations.

o We found that the temporal/spatial locality exist in the swap-in 
references

16



Locality of Swap-in pattern

o These figures show the slot numbers accessed by swap-in operations 
of a particular process.

1000

2000

3000

4000

5000

6000

sl
ot

 n
um

be
r

sendmail

17

0

1000

0 20 40 60 80 100 120 140 160 180 200

sl
ot

 n
um

be
r

sequence of swap-in

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70

sl
ot

 n
um

be
r

sequence of swap-in

Xorg



Read ahead ??

o Due to locality, read-ahead is a good approach to reduce the 
disk seek time.

o Flash memory does not require seek time but read-ahead can 
result in better performance.
n Read-ahead can decrease the number of page faults

o Due to locality, read-ahead is a good approach to reduce the 
disk seek time.

o Flash memory does not require seek time but read-ahead can 
result in better performance.
n Read-ahead can decrease the number of page faults

18



Performance Evaluation

o We have performed trace-driven simulation to investigate the 
performance of read-ahead swap-in schemes and garbage collection 
algorithms.

o Swap-out : allocates slots sequentially

o Swap-in: read-ahead
n 8 pages by linux swap scheme
n 8 pages by block-aligned scheme
n 16 pages by block-aligned scheme
n 32 pages by block-aligned scheme

o Garbage collection algorithms
n Greedy (GR)
n Cost-Benefit (CB)
n Cost-Age-Time  (CAT) 
n Cost Benefit with Age (CBA)

o We have performed trace-driven simulation to investigate the 
performance of read-ahead swap-in schemes and garbage collection 
algorithms.

o Swap-out : allocates slots sequentially

o Swap-in: read-ahead
n 8 pages by linux swap scheme
n 8 pages by block-aligned scheme
n 16 pages by block-aligned scheme
n 32 pages by block-aligned scheme

o Garbage collection algorithms
n Greedy (GR)
n Cost-Benefit (CB)
n Cost-Age-Time  (CAT) 
n Cost Benefit with Age (CBA)

19



Performance Evaluation

o Garbage collection algorithms
n Greedy (GR) : selects a block with the largest amount of invalid 

slots

n Cost-Benefit (CB) : selects a block that maximize the formular:

n Cost-Age-Time  (CAT) : selects a block that maximize the 
formular:

n Cost Benefit with Age (CBA) : selects  a block like CB and sorts 
valid slots with ages and moves the oldest pages first

u
uage

+
-×

1
)1(

age : the time since the most recent modification
u : the fraction of space occupied by valid slots

o Garbage collection algorithms
n Greedy (GR) : selects a block with the largest amount of invalid 

slots

n Cost-Benefit (CB) : selects a block that maximize the formular:

n Cost-Age-Time  (CAT) : selects a block that maximize the 
formular:

n Cost Benefit with Age (CBA) : selects  a block like CB and sorts 
valid slots with ages and moves the oldest pages first

20

u
uage

+
-×

1
)1(

age : the time since the most recent modification
u : the fraction of space occupied by valid slots

counterase
age

u
u

_
1

1
1

××
+
-



Performance Evaluation

o Through the simulation, we measured the following performance 
metrics to calculate the garbage collection cost.
n read count
n erase copy count : the number of writes due to GC 
n erase count

o Garbage collection must copy the valid slots in the victim block to 
the free space before erasing it.

o Copy operation requires read and write operation.

o Garbage collection cost

§ the write operation is 10 times slower than the read operation 
and the erase operation is 75 times slower than the read          
operation.

o Through the simulation, we measured the following performance 
metrics to calculate the garbage collection cost.
n read count
n erase copy count : the number of writes due to GC 
n erase count

o Garbage collection must copy the valid slots in the victim block to 
the free space before erasing it.

o Copy operation requires read and write operation.

o Garbage collection cost

§ the write operation is 10 times slower than the read operation 
and the erase operation is 75 times slower than the read          
operation.

21

Cost = read_count + copy_count*10 + erase_count*75



Some Results 

22

o GC algorithms have little effect.
o The number of read-ahead has 

little effect.
o Block-aligned read-ahead 

outperforms non-block-aligned 
read-ahead.0

50

100

150

200

250

GR CB CAT CBA

er
as

e_
co

py
_c

ou
nt

8_erase_copy 16_erase_copy
32_erase_copy linux_erase_copy



Some Results

o GC Cost

o As a result, GC cost of propo-
sed block-aligned swap-in       
scheme is almost three times  
smaller than linux scheme.



Conclusions

o Segment based swap space management can reduce the 
start-up time.

o Block-aligned read-ahead scheme can reduce the garbage 
collection cost.

o We are yet studying ..

o Segment based swap space management can reduce the 
start-up time.

o Block-aligned read-ahead scheme can reduce the garbage 
collection cost.

o We are yet studying ..

24



Thank you..

ysryu@mju.ac.kr 

25

Thank you..

ysryu@mju.ac.kr 



26

Swap-in 
request


