The Innovator in Digital Media - Mtron

Reliability Issues in Flash Memory SSD Design

2008. 10. 20 Young Hyun Bae

Design Goal of Flash Memory SSD

High Performance

- High throughput and short access time
- Consistent performance against fragmentation and aging
- High Reliability
 - Rugged storage in harsh environments
 - Reliable data retention on various component errors
- Long Endurance
 - Reasonable life-time with limited counts of program/erase cycle
- Low Power Consumption
 - Long battery time on mobile computing devices

Importance of Reliable Design

- User's Expectation for Solid State Drives
 - Rugged storage in any harsh environments
 - More reliable data storage than existing HDD
 - Extremely low user-level bit error rate is required.
 - Sufficiently long life-time as a reliable storage
- Unreliable peculiarities of NAND Flash Memory
 - Unexpected bit errors occur from disturbance problem and data retention problem.
 - Blocks have limited erase/program cycles and can be bad.
 - New technology introduces more unreliable characteristics.

Program Disturbance Problem

Program Disturbance

- Memory cells not being programmed in a block can be changed due to high voltage stress.
- Bit errors can be increased at read operation.
- Solutions to Program Disturbance Problem
 - Reducing program disturbance via restricted page program in a block
 - Sequential order page program
 - Single program on each page
 - Correcting bit errors using ECC mechanism

Read Disturbance Problem

Read Disturbance

- Memory cells not being read in a block can be changed due to high voltage stress.
- Bit errors can be increased after large number of read operation.
- Solutions to Read Disturbance Problem
 - Moving data on some conditions
 - Threshold for read operation counts for a block (approximation using elapsed time after program)
 - Threshold for bit errors by ECC monitoring
 - Correcting bit errors using ECC mechanism

Data Retention Problem

Data Retention

- Data in memory may change after a certain amount of storage time.
- The data retention time is dependent on program/erase cycles.

Solution to Data Retention

- Refreshing data by moving on some conditions
 - Threshold for data retention period (program timestamp and elapsed time)
 - Threshold for bit errors by ECC monitoring

ECC (Error Correcting Code)

- The Essential Mechanism for Reliable SSD Design
 - ECC is the primary solution to recover bit errors due to various problems.
 - BCH is more suitable for managing bit errors on NAND flash memory.
 - New NAND technology needs higher ECC level.
- Considerations for ECC Implementation
 - Configurable ECC engine for various spare sizes

Correction Power	Spare Size (512B Sector)	Spare Size (520B Sector)
4 bits	7 Bytes	15 Bytes
8 bits	14 Bytes	22 Bytes
10 bits	17 Bytes	25 Bytes
12 bits	20 Bytes	28 Bytes
15 bits	25 Bytes	33 Bytes

Block Atomicity in Write Operation

- Whole block is programmed in atomic manner.
 - All pages in a block are programmed at a time.
 - Data in a block becomes valid via the last program for check-point.
 - Pages programmed before the check-point can be safely invalidated when sudden power failure occurs.
 - Each page is programmed by a single operation.
 - Program disturbance can be reduced.
- Paired Page Restriction of MLC NAND
 - Each page in a block are coupled with its paired page.
 - Sudden power failure during page program can cause bit errors in its paired page.
 - Block atomic program policy can resolve that problem.

Advanced Parity Scheme

- Parity Scheme for Advanced Error Recovery
 - Parity pages and parity blocks to handle unexpected errors
 - Pages constructing a parity come from different pages and blocks.
 - Parity density is configurable for more reliable operation.

MTRON

Advanced Features for Reliable SSD

- Meta-data Redundancy
 - SSD is more robust with a redundant copy for FTL meta-data.
- Data Scrambling for MLC NAND
 - Newest MLC NAND requires randomized data patterns in a page and a block for safe program operation.
- Data Protection for DRAM
 - For more reliable SSD, data should be protected for all components in a SSD.
 - Conventional DRAM ECC increases the SSD reliability.
- Extreme Recoverability
 - Data stored in a SSD can be recovered with self-describing information in a atomic block.
 - The final recovery solution when SSD is damaged physically.

Thank You.

