Performance
Modeling of SSD

Seongjun Ahn, Dongjun Shin

Samsung Electronics

¥
e

A

NVRAMOS 2009 Spring

Content

= Background

m Modeling — Basic & Advanced
m Performance Metric

m Performance Estimation

m Future Work

m Conclusion

NVRAMOS 2009 Spring

2/24

Introduction

m Design parameters of SSD

SSD architecture
o Computing: CPU clock, etc
o I/O: number of channels & banks

NAND flash memory
o tRE/tWE, tR, tProg, tBER

m Why do performance modeling?

To estimate performance of changing architecture and NAND
To understand the impact of changes of design parameters

m Performance metrics

Sequential I/0 bandwidth (MB/s)
Random IOPS

NVRAMOS 2009 Spring

3/24

Previous Works - ILP

m ILP (Instruction-Level Parallelism)

RISC instruction pipelining

Throughput = 1/L instruction/sec
o L is the latency of a stage (usually clock cycle)

= How to increase throughput?
Deeper pipeline - smaller L

Superscalar pipelining > throughputis N/L

Instr. No. Pipeline Stage
1 IF | ID | EX [MEM WE
2 IF [ID [EX [MEM| WE
3 IF [ID | EX MEM|WE
4 IF | ID | EX [MEM
5 IF [ID | EX
EL‘::?LC 1|2|3|a|s|6|7

<Instruction pipelining>

NVRAMOS 2009 Spring

E
o
I IF |

- |r
| [P
| F

D

D |

EX
EX
D
(]

MEM
MEM

EX

Ex'

D |

1D
IF

WE
WB |
MEM | WE

MEM | WB

3 D |

EX |MEM WB
EX |MEM WB
ID | EX MEM
ID | EX MEM

WB
)

<Superscalar pipelining>

* All images in this slide are from wikipedia

4/24

ILP vs. SSD A

m SSD operation is also pipelined

Parallelism of computation and I/0
Resources and latencies of each stage are different

= How to model pipeline with asymmetric configuration?

Example. Read command processing

1 1 1
| | | | |
1 1 1 | 1
S Command ! Buffer ! Mapping ! I Flash-to-buf | ! Buf-to-host
parsing ! allocation ! lookup ! Flash read : DMA ! DMA
| | | : |
1 1 1 | 1
1 1 1 | 1
1 | | |
Controller - Controller - Controller * NAND Flash - Flash Channel ° SATA Channel
Resources

<from presentation of D.G.Lee, NVRAMOS08>

NVRAMOS 2009 Spring 524

Basic Model (1/5) L

m Assumptions

All resources operate in parallel
Firmware runs in non-blocking way
Load is evenly distributed on every NAND

Repetitive workload - same command is issued infinitely
No inter-command dependency

IO is aligned with NAND page

NVRAMOS 2009 Spring

6/24

Basic Model (2/5)

m Operation example

Architecture

o 1 CPU

o 2 channel x 2 bank

Operation

o Random read

Busy time in "virtual time unit”

o Firmware processing: 1 time unit
o NAND waiting (tR): 4 time unit

o DMA transfer (tDMA == tRE): 2 time unit

unit operation status—

—

P
CHO
MAND 0
MAMD 1
CH 1
MAMD 2

| MAMND 3

NVRAMOS 2009 Spring

1

R
ﬁ"\
—

s

SSD

chO

‘ chli

~N

l NANDO ‘

iy

l NAND1 ‘ NAND3
_ J
1 6
tFwW tR + tDMA
110
2
tDMA
command sequence & for 410
[3]4]5]6]|7]|8]9 112
[1 3 [[9 11
7 ' 5 5
[3) 7] 11
2 G [0 | 12
| F ' g ' 0
| : 3 2
I I 1
time

7124

Basic Model (3/5) gfﬁ‘

m Observation 1

Same pattern is repeated except some initial commands
Periodic model

m Latency can be expressed as

n: number of commands in a period
t: length of a period (in time)

T(x): latency to complete x commands
o assumes x is multiple of n

& for 410
X
T(X):_Xt_t‘l‘T(n) ceu [T[2]z[z]=]e]7 8|20 1]Z2]
CHO 7 3 S y L
n NAND 0 | 7 ' 5 i 9
NAND 1 | 3 ' ’ 7 i ’ 1
X CH 1 2 1 £ | 5 | & | 0 | 12
L= ¢ Ctefses] [
= —=1 Xt—|—T(n) NAND 2 | Z 5 10
MAND 3 | 4 ' 8 ' 12
n [T 1 T T [T 1

NVRAMOS 2009 Spring

8/24

Basic Model (4a/5)

= Average latency

For single IO
T(x) t t-T(n)
X n X
If x goes to infinity,
lim —= T _t
x>0 X N

m Throughput
IOPS = 1/(average 10 latency) = n/t

m How to find nand t?

NVRAMOS 2009 Spring

9/24

Basic Model (5/5) 7

m Observation 2

Period is determined by bottleneck resource
Bottleneck resource can be determined by normalized busy time
t=t, n =n,such that t,/n, = MAX(t,/n,, t,/n,, ..., ty/ny)

o n;: number of resource i

1 6

tFwW tR + tDMA ‘
110 5

MAX(1/1,6/4,2/2) =6/4

NVRAMOS 2009 Spring

t;: busy time of resource i

N: number of resource types

n: number of commands in a period
t: length of a period (in time)

6 for 410

du [T[2]3]4[s[e]7[e]e|o]|1]2]
CHO [1 3 HE B
NanDO | | 1 5 5
NAND 1 [3 7 il

CH 1 2 [¢ 6 | & 6 | 12

MAND 2 | 2 6 10

NAND 3 | 1 | 3 ' 12

10/24

Basic Model - Summary

m Performance model

given
o n;: number of resource i
o t;: busy time of resource j
o N: number of resource types

tIO = MAX(t,/n, ty,/n,, ..., ty/Ny)
o tIO : average latency to complete one command

m Useful for exploring performance of SSD

What if tR or tDMA is changed?
What's the ideal throughput?
What if controller gets faster?

NVRAMOS 2009 Spring

11/24

Basic Model - Example (1/4)

= Random read

Assumptions - simple SSD (2ch x 2 bank)
o 1 CPU to execute firmware
Performance model
o tIO = MAX(tFW/1, (tR+tDMA)/4, tDMA/2)
Equilibrium (optimal) case example
o tFW =1,tR = 2, tDMA = 2
o tIO = MAX(1/1, 4/4, 2/2) = 1

| |
=]

®u [T[Z2[3[4[5[®
CHO [1
MAND 0 |

MAND 1 |

—
(4 y]

p
SSD
chO ‘ chl

3
CH 1 | 2 4 6 8

NAND 2 2z | &

NAND 3 | —4 — B

NVRAMOS 2009 Spring

.

\ NANDO l
\ NAND1 l

e

NAND3

J

12/24

Basic Model - Example (2/4)

m Random read - casel. firmware bound

tFW=2,tR=4,tDMA =2
tIO = MAX(2/1, (4+2)/4, 2/2) = 2

2

2 6
110 [FW | tR-IDMA | 2
ceu [T [23 T 4 g [3 7]
CHO 1 3 35 T
MAND 0 | 1 5
NAND 1 | 3 7
CH1 4 6
MNAND 2 | 2 6
NAND 3 I 4 I | 8 |

NVRAMOS 2009 Spring

13/24

Basic Model - Example (3/4)

= Random read - case2. DMA bound

tFW = 1, tR = 2, tDMA = 4
tIO = MAX(1/1, (2+4)/4, 4/2) = 2

4
i g tDMA,

1o [] tR+D0MA | 8for 410

cu [T[Z]3[2[5[6[7 (8|9

CHO | T 3 g
NAND O | i 5) 5
NAND 1 N 7]

CH1 [2 4 3 8
NAND 2 | z & | B
MNAND 3 4] 4 g | 8

I

NVRAMOS 2009 Spring

14/24

Basic Model - Example (4/4) e

= Random read - case3. NAND bound

tFW = 1, tR = 4, tDMA = 2
tIO = MAX(1/1, (4+2)/4, 2/2) = 1.5

2

1 :
110 |l tR+tDM A |
§ for 410 I
U f1]2]3]4]5]s]7]8f[afof1]2]
CHO [1 3 5 7 | @ 11
nanoo || 1 :]
NAND 1 [3 7 | 1
CH 1 2 | 4 & | & 10 | 12
NAND 2 | 2 ' G ' 0
NAND 3 | 1 ' 5 ' 12
o |1 I

NVRAMOS 2009 Spring

15/24

Advanced Model - Adding Host

m Applying the host delay between requests

Host can be regarded as one kind of resource
tIO = MAX(tHost, tFW, (tR + tDMA)/4, tDMA/2)

m Applying command queuing - finite I0 queue

Incoming IO queue can be regarded as a (virtual) resource
o ty: required time to complete one IO (= tHost + tFW + tR + tDMA)
0 Ng: size of incoming IO queue
tIO = MAX(tHost, tFW, (tR + tDMA)/4, tDMA/ 2, tQ/nQ)
Rationale
o Each entry in the queue is in use at least for t, time unit.

o A new IO request can be queued only when there exists an empty entry.

NVRAMOS 2009 Spring

16/24

Advanced Model - Example et

. Command queue size = 4
tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2, t,/4)
tHost = 1, tFW = 1, tR = 2, tDMA =2

m Then,
tIo = MAX(1, 1, (2+2)/4, 2/2, (1+1+2+2)/4) = 6/4 = 1.5

Host 2
1 1 4

110 [] | tR«#DmA] 6 for 410

Host [T JZ[3]%] S[617 (3]]

U [TT2]3T74] HEEBE

CHO [3 [5 7
MAND 0 1 3
NAND 1 |—[_'3 [7

CH 1 =z [¢ & | B
NAND 2 | 7 5
MAMND 3 | — 4 | —a

NVRAMOS 2009 Spring 17/24

SSD Performance Models

= Random read
As explained

t — MAX[tHost!tva 1:R +tDMA’ tDMA ’tHost+tFW +tR +tDMA]

read —
nNAND nChannel nQueue_depth

m Sequential read

a - number of pages to read per single read
T(a, ...) — time to process single sequential read with a pages

tread = MAX[tHostatFW, a(tR +tD|v|A) , aXtDMA ’ tHost+T(a, RCPU’ RNAND’ RChannel)J

nNAND nChannel r]Queue_depth

NVRAMOS 2009 Spring

18/24

SSD Performance Models

m Write performance is dependent on mapping

m Assumption - page mapping
Every NAND has at least one free block for merge

During merge, all write operations will be blocked
Switch merge for sequential write, full merge for random write

m tWrite = tIO + tMerge x Merge_frequency

tIO calc is similar to read (replace tR with tProg)

Sequential write (switch merge)

o tMerge = tBER

o Merge_frequency = 1/(pages_in_block x number_of NAND)
Random write (full merge)

o tMerge = 2xtBER + tCopyBack x pages_in_block

o Merge_frequency = 1/(pages_in_block x number_of_NAND)

NVRAMOS 2009 Spring

19/24

Performance Estimation (1/3)

=
’P‘

m Assumptions (or constants)

8 channel x 8 bank
tHost = 10us, NCQ = 32

NAND: large block SLC (x8)
o Page size = 2KB, pages in block = 64
o tR = 20us, tProg = 200us, tBER = 2000us, tRE/tWE = 25ns

m Variables
tFW: Ous (ideal) ~ 200us

NVRAMOS 2009 Spring

20/24

Performance Estimation (2/3)

m Sequential I/0 bandwidth

Bounded by I/0 time (tR/tProg/tDMA)

Sequential Read

throughput{MB/s)

0 50 100 150 200
firmware overhead{usec)

NVRAMOS 2009 Spring

throughput(MB/s)
[
)]
o

Sequential Write

50 100 150 200

firmware overhead(usec)

21/24

Performance Estimation (3/3) o

= Random IOPS

Bounded by firmware overhead
Firmware overhead = CPU time + memory access + etc

Random Read

Random Write

100000 F0000
60000 F
80000 |
o = 50000
5 5
= 60000} 1=
= = 40000 -
= =
5 5
gl 40000 |) g-. 30000 |
2 2
£ £ 20000}
20000 |
10000 |
0 . . . 0 . . .
0 50 100 150 200 0 50 100 150 200
firmware overhead(usec) firmware overhead{usec)

NVRAMOS 2009 Spring

22/24

A
Future Work - More Parameters! .~

m Accuracy of firmware overhead

Architecture - CPU clock, multi-core, bus topology, HW acceleration
Mapping algorithms - BAST, FAST, ...

= NAND flash memory

High-speed I/F (ex. ONFI)
Copy-back condition (internal, external, R4CB)
Cache read/program

= Workload

Micro benchmark - Sub-page I/0, Misaligned I/0
Synthetic benchmark - PCMark05, SysMark
Effect of trim(?)

NVRAMOS 2009 Spring

23/24

- A
Conclusion o

@ We can estimate performance of SSD using analytic
modeling

Parameters - architecture, NAND, firmware, workload

= Firmware overhead is not negligible in SSD where I/0
resources operate in parallel

m Call for action — more sophisticated performance
modeling!

NVRAMOS 2009 Spring

24/24

