
SAMSUNG

FSWD

SAMSUNG

NVRAMOS 2009 Spring

Performance
Modeling of SSD

Seongjun Ahn, Dongjun Shin

Samsung Electronics

SAMSUNG

2/24
NVRAMOS 2009 Spring

Content

 Background

 Modeling – Basic & Advanced

 Performance Metric

 Performance Estimation

 Future Work

 Conclusion

SAMSUNG

3/24
NVRAMOS 2009 Spring

Introduction

 Design parameters of SSD

 SSD architecture

 Computing: CPU clock, etc

 I/O: number of channels & banks

 NAND flash memory

 tRE/tWE, tR, tProg, tBER

 Why do performance modeling?

 To estimate performance of changing architecture and NAND

 To understand the impact of changes of design parameters

 Performance metrics

 Sequential I/O bandwidth (MB/s)

 Random IOPS

SAMSUNG

4/24
NVRAMOS 2009 Spring

Previous Works - ILP

 ILP (Instruction-Level Parallelism)

 RISC instruction pipelining

 Throughput = 1/L instruction/sec

 L is the latency of a stage (usually clock cycle)

 How to increase throughput?

 Deeper pipeline smaller L

 Superscalar pipelining throughput is N/L

<Instruction pipelining> <Superscalar pipelining>

* All images in this slide are from wikipedia

SAMSUNG

5/24
NVRAMOS 2009 Spring

ILP vs. SSD

 SSD operation is also pipelined

 Parallelism of computation and I/O

 Resources and latencies of each stage are different

 How to model pipeline with asymmetric configuration?

Command

parsing

Buffer

allocation

Mapping

lookup
Flash read

Flash-to-buf

DMA

Buf-to-host

DMA

Example. Read command processing

Controller NAND Flash Flash Channel SATA ChannelController Controller

Resources

<from presentation of D.G.Lee, NVRAMOS08>

SAMSUNG

6/24
NVRAMOS 2009 Spring

Basic Model (1/5)

 Assumptions

 All resources operate in parallel

 Firmware runs in non-blocking way

 Load is evenly distributed on every NAND

 Repetitive workload - same command is issued infinitely

 No inter-command dependency

 IO is aligned with NAND page

SAMSUNG

7/24
NVRAMOS 2009 Spring

Basic Model (2/5)

 Operation example

 Architecture

 1 CPU

 2 channel x 2 bank

 Operation

 Random read

 Busy time in "virtual time unit"

 Firmware processing: 1 time unit

 NAND waiting (tR): 4 time unit

 DMA transfer (tDMA == tRE): 2 time unit

CPU

NAND0

NAND1

NAND2

NAND3

SSD

ch0 ch1

time

command sequence

unit operation status

SAMSUNG

8/24
NVRAMOS 2009 Spring

Basic Model (3/5)

 Observation 1

 Same pattern is repeated except some initial commands

 Periodic model

 Latency can be expressed as

 n: number of commands in a period

 t: length of a period (in time)

 T(x): latency to complete x commands

 assumes x is multiple of n

)(1

)()(

nTt
n

x

nTtt
n

x
xT

SAMSUNG

9/24
NVRAMOS 2009 Spring

Basic Model (4/5)

 Average latency

 For single IO

 If x goes to infinity,

 Throughput

 IOPS = 1/(average IO latency) = n/t

 How to find n and t ?

x

nTt

n

t

x

xT)()(

n

t

x

xT

x

)(
lim

SAMSUNG

10/24
NVRAMOS 2009 Spring

Basic Model (5/5)

 Observation 2

 Period is determined by bottleneck resource

 Bottleneck resource can be determined by normalized busy time

 t = tk, n = nk such that tk/nk = MAX(t1/n1, t2/n2, ..., tN/nN)

 ni: number of resource i

 ti: busy time of resource i

 N: number of resource types

 n: number of commands in a period

 t: length of a period (in time)

MAX(1/1, 6/4, 2/2) = 6/4

SAMSUNG

11/24
NVRAMOS 2009 Spring

Basic Model - Summary

 Performance model

 given

 ni: number of resource i

 ti: busy time of resource i

 N: number of resource types

 tIO = MAX(t1/n1, t2/n2, ..., tN/nN)

 tIO : average latency to complete one command

 Useful for exploring performance of SSD

 What if tR or tDMA is changed?

 What's the ideal throughput?

 What if controller gets faster?

SAMSUNG

12/24
NVRAMOS 2009 Spring

Basic Model – Example (1/4)

 Random read

 Assumptions – simple SSD (2ch x 2 bank)

 1 CPU to execute firmware

 Performance model

 tIO = MAX(tFW/1, (tR+tDMA)/4, tDMA/2)

 Equilibrium (optimal) case example

 tFW = 1, tR = 2, tDMA = 2

 tIO = MAX(1/1, 4/4, 2/2) = 1

CPU

NAND0

NAND1

NAND2

NAND3

SSD

ch0 ch1

SAMSUNG

13/24
NVRAMOS 2009 Spring

Basic Model – Example (2/4)

 Random read – case1. firmware bound

 tFW = 2, tR = 4, tDMA = 2

 tIO = MAX(2/1, (4+2)/4, 2/2) = 2

SAMSUNG

14/24
NVRAMOS 2009 Spring

Basic Model – Example (3/4)

 Random read – case2. DMA bound

 tFW = 1, tR = 2, tDMA = 4

 tIO = MAX(1/1, (2+4)/4, 4/2) = 2

SAMSUNG

15/24
NVRAMOS 2009 Spring

Basic Model – Example (4/4)

 Random read – case3. NAND bound

 tFW = 1, tR = 4, tDMA = 2

 tIO = MAX(1/1, (4+2)/4, 2/2) = 1.5

SAMSUNG

16/24
NVRAMOS 2009 Spring

Advanced Model – Adding Host

 Applying the host delay between requests

 Host can be regarded as one kind of resource

 tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2)

 Applying command queuing - finite IO queue

 Incoming IO queue can be regarded as a (virtual) resource

 tQ: required time to complete one IO (= tHost + tFW + tR + tDMA)

 nQ: size of incoming IO queue

 tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2, tQ/nQ)

 Rationale

 Each entry in the queue is in use at least for tQ time unit.

 A new IO request can be queued only when there exists an empty entry.

SAMSUNG

17/24
NVRAMOS 2009 Spring

Advanced Model – Example

 Command queue size = 4

 tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2, tQ/4)

 tHost = 1, tFW = 1, tR = 2, tDMA =2

 Then,

 tIO = MAX(1, 1, (2+2)/4, 2/2, (1+1+2+2)/4) = 6/4 = 1.5

SAMSUNG

18/24
NVRAMOS 2009 Spring

SSD Performance Models

 Random read

 As explained

 Sequential read

 a - number of pages to read per single read

 T(a, …) – time to process single sequential read with a pages

depthQueue

DMARFWHost

Channel

DMA

NAND

DMAR
FWHostread

n

tttt

n

t

n

tt
ttMAXt

_

,,,,

depthQueue

ChannelNANDCPUHost

Channel

DMA

NAND

DMAR
FWHostread

n

RRRaTt

n

ta

n

tta
ttMAXt

_

),,,(
,,

)(
,,

SAMSUNG

19/24
NVRAMOS 2009 Spring

SSD Performance Models

 Write performance is dependent on mapping

 Assumption – page mapping

 Every NAND has at least one free block for merge

 During merge, all write operations will be blocked

 Switch merge for sequential write, full merge for random write

 tWrite = tIO + tMerge x Merge_frequency

 tIO calc is similar to read (replace tR with tProg)

 Sequential write (switch merge)

 tMerge = tBER

 Merge_frequency = 1/(pages_in_block x number_of_NAND)

 Random write (full merge)

 tMerge = 2xtBER + tCopyBack x pages_in_block

 Merge_frequency = 1/(pages_in_block x number_of_NAND)

SAMSUNG

20/24
NVRAMOS 2009 Spring

Performance Estimation (1/3)

 Assumptions (or constants)

 8 channel x 8 bank

 tHost = 10us, NCQ = 32

 NAND: large block SLC (x8)

 Page size = 2KB, pages in block = 64

 tR = 20us, tProg = 200us, tBER = 2000us, tRE/tWE = 25ns

 Variables

 tFW: 0us (ideal) ~ 200us

SAMSUNG

21/24
NVRAMOS 2009 Spring

Performance Estimation (2/3)

 Sequential I/O bandwidth

 Bounded by I/O time (tR/tProg/tDMA)

SAMSUNG

22/24
NVRAMOS 2009 Spring

Performance Estimation (3/3)

 Random IOPS

 Bounded by firmware overhead

 Firmware overhead = CPU time + memory access + etc

SAMSUNG

23/24
NVRAMOS 2009 Spring

Future Work – More Parameters!

 Accuracy of firmware overhead

 Architecture – CPU clock, multi-core, bus topology, HW acceleration

 Mapping algorithms - BAST, FAST, …

 NAND flash memory

 High-speed I/F (ex. ONFI)

 Copy-back condition (internal, external, R4CB)

 Cache read/program

 Workload

 Micro benchmark - Sub-page I/O, Misaligned I/O

 Synthetic benchmark - PCMark05, SysMark

 Effect of trim(?)

SAMSUNG

24/24
NVRAMOS 2009 Spring

Conclusion

 We can estimate performance of SSD using analytic
modeling

 Parameters - architecture, NAND, firmware, workload

 Firmware overhead is not negligible in SSD where I/O
resources operate in parallel

 Call for action – more sophisticated performance
modeling!

