

Performance Modeling of SSD

Seongjun Ahn, Dongjun Shin

Samsung Electronics

Content

- Background
- Modeling Basic & Advanced
- Performance Metric
- Performance Estimation
- Future Work
- Conclusion

Introduction

Design parameters of SSD

SSD architecture

- Computing: CPU clock, etc
- □ I/O: number of channels & banks

NAND flash memory

□ tRE/tWE, tR, tProg, tBER

Why do performance modeling?

- To estimate performance of changing architecture and NAND
- To understand the impact of changes of design parameters

Performance metrics

- Sequential I/O bandwidth (MB/s)
- Random IOPS

Previous Works - ILP

ILP (Instruction-Level Parallelism)

- RISC instruction pipelining
- Throughput = 1/L instruction/sec

How to increase throughput?

- Deeper pipeline → smaller L
- Superscalar pipelining → throughput is N/L

	Pipeline Stage								
IF	D	ΕX	мем	WB					
	IF	Ð	EX	МЕМ	WB				
		IF	D	ΕX	мем	WB			
			Η	D	ΕX	мем			
				IF	ID	ΕX			
1	2	3	4	5	6	7			
	1	1 2	IF ID IF ID IF IF I 2	ID EX IDE IF ID EX IF ID EX IF ID IF IF IF ID IF IF ID IF IF ID IF IF ID IF IF IF	IF ID EX IER WB IF ID EX MEM IF ID EX MEM IF IF ID EX IF IF ID IF IF IF IF ID IF IF IF ID	IF ID EX MEM WB IF IF ID EX MEM IF IF ID EX MEM IF IF ID EX IE IF IF ID EX IE			

<Instruction pipelining>

IF	ID	ΕX	MEM	WB				
IF	ID	ΕX	MEM					
1	IF	ID	ΕX	MEM	WB			
t.	IF	ID	ΕX	MEM	WB			
		IF	ID	EX	MEM	WB		
		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
			IF	ID	ΕX	MEM	WB	
				IF	ID	ΕX	MEM	WB
				IF	ID	ΕX	MEM	WB

<Superscalar pipelining>

L is the latency of a stage (usually clock cycle)

ILP vs. SSD

SSD operation is also pipelined

- Parallelism of computation and I/O
- Resources and latencies of each stage are different
- How to model pipeline with asymmetric configuration?

<from presentation of D.G.Lee, NVRAMOS08>

Assumptions

- All resources operate in parallel
- Firmware runs in non-blocking way
- Load is evenly distributed on every NAND
- Repetitive workload same command is issued infinitely
- No inter-command dependency
- IO is aligned with NAND page

Basic Model (2/5)

Operation example

- **Architecture**
 - □ 1 CPU
 - 2 channel x 2 bank

Operation

Random read

Busy time in "virtual time unit"

- Firmware processing: 1 time unit
- NAND waiting (tR): 4 time unit
- DMA transfer (tDMA == tRE): 2 time unit

Basic Model (3/5)

K

- Observation 1
 - Same pattern is repeated except some initial commands
 - Periodic model
- Latency can be expressed as
 - n: number of commands in a period
 - t: length of a period (in time)
 - T(x): latency to complete x commands
 - assumes x is multiple of n

$$T(x) = \frac{x}{n} \times t - t + T(n)$$
$$= \left(\frac{x}{n} - 1\right) \times t + T(n)$$

Average latency

For single IO

$$\frac{T(x)}{x} = \frac{t}{n} - \frac{t - T(n)}{x}$$

If x goes to infinity,

$$\lim_{x \to \infty} \frac{T(x)}{x} = \frac{t}{n}$$

- Throughput
 - IOPS = 1/(average IO latency) = n/t
- How to find *n* and *t* ?

Basic Model (5/5)

Observation 2

- Period is determined by bottleneck resource
- Bottleneck resource can be determined by normalized busy time
- $t = t_{kr} n = n_k$ such that $t_k/n_k = MAX(t_1/n_{1r}, t_2/n_{2r}, ..., t_N/n_N)$
 - \square n_i : number of resource *i*
 - **\Box** t_i : busy time of resource *i*
 - □ *N*: number of resource types
 - □ *n*: number of commands in a period
 - □ *t*: length of a period (in time)

Basic Model - Summary

Performance model

given

- \square n_i : number of resource *i*
- \Box t_i : busy time of resource *i*
- □ *N*: number of resource types

• tIO = MAX $(t_1/n_1, t_2/n_2, ..., t_N/n_N)$

ItIO : average latency to complete one command

Useful for exploring performance of SSD

- What if tR or tDMA is changed?
- What's the ideal throughput?
- What if controller gets faster?

NVRAMOS 2009 Spring

Basic Model – Example (1/4)

Random read

Assumptions – simple SSD (2ch x 2 bank)

- 1 CPU to execute firmware
- Performance model
 - $\square \ tIO = MAX(tFW/1, (tR+tDMA)/4, tDMA/2)$

Equilibrium (optimal) case example

- □ tFW = 1, tR = 2, tDMA = 2
- \square tIO = MAX(1/1, 4/4, 2/2) = 1

Basic Model – Example (2/4)

Random read – case1. firmware bound

- tFW = 2, tR = 4, tDMA = 2
- tIO = MAX(2/1, (4+2)/4, 2/2) = 2

Basic Model – Example (3/4)

Random read – case2. DMA bound

- tFW = 1, tR = 2, tDMA = 4
- tIO = MAX(1/1, (2+4)/4, 4/2) = 2

Basic Model – Example (4/4)

Random read – case3. NAND bound

- tFW = 1, tR = 4, tDMA = 2
- tIO = MAX(1/1, (4+2)/4, 2/2) = 1.5

Advanced Model – Adding Host

Applying the host delay between requests

- Host can be regarded as one kind of resource
- tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2)
- Applying command queuing finite IO queue
 - Incoming IO queue can be regarded as a (virtual) resource
 - t_o : required time to complete one IO (= tHost + tFW + tR + tDMA)
 - n_Q: size of incoming IO queue
 - tIO = MAX(tHost, tFW, (tR + tDMA)/4, tDMA/2, t_Q/n_Q)

Rationale

- $\hfill\square$ Each entry in the queue is in use at least for t_Q time unit.
- □ A new IO request can be queued only when there exists an empty entry.

Advanced Model – Example

Command queue size = 4

- tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2, t_o/4)
- tHost = 1, tFW = 1, tR = 2, tDMA = 2
- Then,
 - tIO = MAX(1, 1, (2+2)/4, 2/2, (1+1+2+2)/4) = 6/4 = 1.5

Random read

As explained

$$t_{read} = MAX \left(t_{Host}, t_{FW}, \frac{t_R + t_{DMA}}{n_{NAND}}, \frac{t_{DMA}}{n_{Channel}}, \frac{t_{Host} + t_{FW} + t_R + t_{DMA}}{n_{Queue_depth}} \right)$$

Sequential read

- a number of pages to read per single read
- T(a, ...) time to process single sequential read with a pages

$$t_{read} = MAX \left(t_{Host}, t_{FW}, \frac{a(t_R + t_{DMA})}{n_{NAND}}, \frac{a \times t_{DMA}}{n_{Channel}}, \frac{t_{Host} + T(a, R_{CPU}, R_{NAND}, R_{Channel})}{n_{Queue_depth}} \right)$$

SSD Performance Models

- Write performance is dependent on mapping
- Assumption page mapping
 - Every NAND has at least one free block for merge
 - During merge, all write operations will be blocked
 - Switch merge for sequential write, full merge for random write

tWrite = tIO + tMerge x Merge_frequency

- tIO calc is similar to read (replace tR with tProg)
- Sequential write (switch merge)
 - tMerge = tBER
 - Merge_frequency = 1/(pages_in_block x number_of_NAND)

Random write (full merge)

- tMerge = 2xtBER + tCopyBack x pages_in_block
- Merge_frequency = 1/(pages_in_block x number_of_NAND)

Performance Estimation (1/3)

Assumptions (or constants)

- 8 channel x 8 bank
- tHost = 10us, NCQ = 32
- NAND: large block SLC (x8)
 - Page size = 2KB, pages in block = 64
 - \Box tR = 20us, tProg = 200us, tBER = 2000us, tRE/tWE = 25ns

Variables

tFW: 0us (ideal) ~ 200us

Sequential I/O bandwidth

Bounded by I/O time (tR/tProg/tDMA)

NVRAMOS 2009 Spring

Performance Estimation (3/3)

Random IOPS

- Bounded by firmware overhead
- Firmware overhead = CPU time + memory access + etc

Future Work – More Parameters! 🏹

Accuracy of firmware overhead

- Architecture CPU clock, multi-core, bus topology, HW acceleration
- Mapping algorithms BAST, FAST, ...

NAND flash memory

- High-speed I/F (ex. ONFI)
- Copy-back condition (internal, external, R4CB)
- Cache read/program

Workload

- Micro benchmark Sub-page I/O, Misaligned I/O
- Synthetic benchmark PCMark05, SysMark
- Effect of trim(?)

Conclusion

- We can estimate performance of SSD using analytic modeling
 - Parameters architecture, NAND, firmware, workload
- Firmware overhead is not negligible in SSD where I/O resources operate in parallel
- Call for action more sophisticated performance modeling!