
SAMSUNG

FSWD

SAMSUNG

NVRAMOS 2009 Spring

Performance
Modeling of SSD

Seongjun Ahn, Dongjun Shin

Samsung Electronics

SAMSUNG

2/24
NVRAMOS 2009 Spring

Content

 Background

 Modeling – Basic & Advanced

 Performance Metric

 Performance Estimation

 Future Work

 Conclusion

SAMSUNG

3/24
NVRAMOS 2009 Spring

Introduction

 Design parameters of SSD

 SSD architecture

 Computing: CPU clock, etc

 I/O: number of channels & banks

 NAND flash memory

 tRE/tWE, tR, tProg, tBER

 Why do performance modeling?

 To estimate performance of changing architecture and NAND

 To understand the impact of changes of design parameters

 Performance metrics

 Sequential I/O bandwidth (MB/s)

 Random IOPS

SAMSUNG

4/24
NVRAMOS 2009 Spring

Previous Works - ILP

 ILP (Instruction-Level Parallelism)

 RISC instruction pipelining

 Throughput = 1/L instruction/sec

 L is the latency of a stage (usually clock cycle)

 How to increase throughput?

 Deeper pipeline  smaller L

 Superscalar pipelining  throughput is N/L

<Instruction pipelining> <Superscalar pipelining>

* All images in this slide are from wikipedia

SAMSUNG

5/24
NVRAMOS 2009 Spring

ILP vs. SSD

 SSD operation is also pipelined

 Parallelism of computation and I/O

 Resources and latencies of each stage are different

 How to model pipeline with asymmetric configuration?

Command

parsing

Buffer

allocation

Mapping

lookup
Flash read

Flash-to-buf

DMA

Buf-to-host

DMA

Example. Read command processing

Controller NAND Flash Flash Channel SATA ChannelController Controller

Resources

<from presentation of D.G.Lee, NVRAMOS08>

SAMSUNG

6/24
NVRAMOS 2009 Spring

Basic Model (1/5)

 Assumptions

 All resources operate in parallel

 Firmware runs in non-blocking way

 Load is evenly distributed on every NAND

 Repetitive workload - same command is issued infinitely

 No inter-command dependency

 IO is aligned with NAND page

SAMSUNG

7/24
NVRAMOS 2009 Spring

Basic Model (2/5)

 Operation example

 Architecture

 1 CPU

 2 channel x 2 bank

 Operation

 Random read

 Busy time in "virtual time unit"

 Firmware processing: 1 time unit

 NAND waiting (tR): 4 time unit

 DMA transfer (tDMA == tRE): 2 time unit

CPU

NAND0

NAND1

NAND2

NAND3

SSD

ch0 ch1

time

command sequence

unit operation status

SAMSUNG

8/24
NVRAMOS 2009 Spring

Basic Model (3/5)

 Observation 1

 Same pattern is repeated except some initial commands

 Periodic model

 Latency can be expressed as

 n: number of commands in a period

 t: length of a period (in time)

 T(x): latency to complete x commands

 assumes x is multiple of n

)(1

)()(

nTt
n

x

nTtt
n

x
xT













SAMSUNG

9/24
NVRAMOS 2009 Spring

Basic Model (4/5)

 Average latency

 For single IO

 If x goes to infinity,

 Throughput

 IOPS = 1/(average IO latency) = n/t

 How to find n and t ?

x

nTt

n

t

x

xT)()(


n

t

x

xT

x




)(
lim

SAMSUNG

10/24
NVRAMOS 2009 Spring

Basic Model (5/5)

 Observation 2

 Period is determined by bottleneck resource

 Bottleneck resource can be determined by normalized busy time

 t = tk, n = nk such that tk/nk = MAX(t1/n1, t2/n2, ..., tN/nN)

 ni: number of resource i

 ti: busy time of resource i

 N: number of resource types

 n: number of commands in a period

 t: length of a period (in time)

MAX(1/1, 6/4, 2/2) = 6/4

SAMSUNG

11/24
NVRAMOS 2009 Spring

Basic Model - Summary

 Performance model

 given

 ni: number of resource i

 ti: busy time of resource i

 N: number of resource types

 tIO = MAX(t1/n1, t2/n2, ..., tN/nN)

 tIO : average latency to complete one command

 Useful for exploring performance of SSD

 What if tR or tDMA is changed?

 What's the ideal throughput?

 What if controller gets faster?

SAMSUNG

12/24
NVRAMOS 2009 Spring

Basic Model – Example (1/4)

 Random read

 Assumptions – simple SSD (2ch x 2 bank)

 1 CPU to execute firmware

 Performance model

 tIO = MAX(tFW/1, (tR+tDMA)/4, tDMA/2)

 Equilibrium (optimal) case example

 tFW = 1, tR = 2, tDMA = 2

 tIO = MAX(1/1, 4/4, 2/2) = 1

CPU

NAND0

NAND1

NAND2

NAND3

SSD

ch0 ch1

SAMSUNG

13/24
NVRAMOS 2009 Spring

Basic Model – Example (2/4)

 Random read – case1. firmware bound

 tFW = 2, tR = 4, tDMA = 2

 tIO = MAX(2/1, (4+2)/4, 2/2) = 2

SAMSUNG

14/24
NVRAMOS 2009 Spring

Basic Model – Example (3/4)

 Random read – case2. DMA bound

 tFW = 1, tR = 2, tDMA = 4

 tIO = MAX(1/1, (2+4)/4, 4/2) = 2

SAMSUNG

15/24
NVRAMOS 2009 Spring

Basic Model – Example (4/4)

 Random read – case3. NAND bound

 tFW = 1, tR = 4, tDMA = 2

 tIO = MAX(1/1, (4+2)/4, 2/2) = 1.5

SAMSUNG

16/24
NVRAMOS 2009 Spring

Advanced Model – Adding Host

 Applying the host delay between requests

 Host can be regarded as one kind of resource

 tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2)

 Applying command queuing - finite IO queue

 Incoming IO queue can be regarded as a (virtual) resource

 tQ: required time to complete one IO (= tHost + tFW + tR + tDMA)

 nQ: size of incoming IO queue

 tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2, tQ/nQ)

 Rationale

 Each entry in the queue is in use at least for tQ time unit.

 A new IO request can be queued only when there exists an empty entry.

SAMSUNG

17/24
NVRAMOS 2009 Spring

Advanced Model – Example

 Command queue size = 4

 tIO = MAX(tHost, tFW , (tR + tDMA)/4, tDMA/2, tQ/4)

 tHost = 1, tFW = 1, tR = 2, tDMA =2

 Then,

 tIO = MAX(1, 1, (2+2)/4, 2/2, (1+1+2+2)/4) = 6/4 = 1.5

SAMSUNG

18/24
NVRAMOS 2009 Spring

SSD Performance Models

 Random read

 As explained

 Sequential read

 a - number of pages to read per single read

 T(a, …) – time to process single sequential read with a pages













 


depthQueue

DMARFWHost

Channel

DMA

NAND

DMAR
FWHostread

n

tttt

n

t

n

tt
ttMAXt

_

,,,,













 


depthQueue

ChannelNANDCPUHost

Channel

DMA

NAND

DMAR
FWHostread

n

RRRaTt

n

ta

n

tta
ttMAXt

_

),,,(
,,

)(
,,

SAMSUNG

19/24
NVRAMOS 2009 Spring

SSD Performance Models

 Write performance is dependent on mapping

 Assumption – page mapping

 Every NAND has at least one free block for merge

 During merge, all write operations will be blocked

 Switch merge for sequential write, full merge for random write

 tWrite = tIO + tMerge x Merge_frequency

 tIO calc is similar to read (replace tR with tProg)

 Sequential write (switch merge)

 tMerge = tBER

 Merge_frequency = 1/(pages_in_block x number_of_NAND)

 Random write (full merge)

 tMerge = 2xtBER + tCopyBack x pages_in_block

 Merge_frequency = 1/(pages_in_block x number_of_NAND)

SAMSUNG

20/24
NVRAMOS 2009 Spring

Performance Estimation (1/3)

 Assumptions (or constants)

 8 channel x 8 bank

 tHost = 10us, NCQ = 32

 NAND: large block SLC (x8)

 Page size = 2KB, pages in block = 64

 tR = 20us, tProg = 200us, tBER = 2000us, tRE/tWE = 25ns

 Variables

 tFW: 0us (ideal) ~ 200us

SAMSUNG

21/24
NVRAMOS 2009 Spring

Performance Estimation (2/3)

 Sequential I/O bandwidth

 Bounded by I/O time (tR/tProg/tDMA)

SAMSUNG

22/24
NVRAMOS 2009 Spring

Performance Estimation (3/3)

 Random IOPS

 Bounded by firmware overhead

 Firmware overhead = CPU time + memory access + etc

SAMSUNG

23/24
NVRAMOS 2009 Spring

Future Work – More Parameters!

 Accuracy of firmware overhead

 Architecture – CPU clock, multi-core, bus topology, HW acceleration

 Mapping algorithms - BAST, FAST, …

 NAND flash memory

 High-speed I/F (ex. ONFI)

 Copy-back condition (internal, external, R4CB)

 Cache read/program

 Workload

 Micro benchmark - Sub-page I/O, Misaligned I/O

 Synthetic benchmark - PCMark05, SysMark

 Effect of trim(?)

SAMSUNG

24/24
NVRAMOS 2009 Spring

Conclusion

 We can estimate performance of SSD using analytic
modeling

 Parameters - architecture, NAND, firmware, workload

 Firmware overhead is not negligible in SSD where I/O
resources operate in parallel

 Call for action – more sophisticated performance
modeling!

