
1

NVRAMOS2009

2009. 10. 20

Seoul National University

Chang-Gun Lee

Real-Time Executions of Program Codes
in NAND Flash Memory

2

Increasing Market of Flash Memory

Traditional
Embedded
Systems

Soft Real-time
Embedded Systems

Hard Real-time
Embedded Systems

NAND: Data Storage
NOR: Code Storage

Mobile embedded devices  shock resistance
Data and Codes are dramatically increasing  high volume
Flash Memory: Non-volatile, shock resistance, high volume

3

Why NAND is attractive for codes?

Soft Real-Time Embedded Systems
(e.g., Multimedia Smart Phones)

–more than 5M source code lines in a smart
phone

– cf. 5M source code lines in banking system

Hard Real-Time Embedded Systems
(e.g., Automotive)

Memory-hierarchy for embedded
systems

CPU

RAM

자기 디스크

 자기디스크 기반

메모리 계층구조

CPU

RAM
NOR

(code)

NAND

(data)

NOR와 NAND를 모두

사용하는 메모리 계층구조

Weak for shocks

Large energy
consumption

High price

NAND-based low-cost, large-size
Code execution technology

Increasing SW Complexity  Huge program codes

4

What is a big challenge of NAND for codes?

10-25us load
delay

CPU RAM

page

512 bytes 16 bytes

block= 32
pages

data spare

50ns/word

DMA

• Page based sequential Read (No Random Access)

– Read: 130us/page

• Page based write

– 300us/page

• Block based Erase

– 2 ms/block

• No overwrite before erase

NAND Physical Characteristics

CPU

RAM

NAND

(data+code)

NAND 기반

Shadowing

CPU

RAM

NAND

(data+code)

NAND 기반

가상메모리

High
cost

High
energy

How to guarantee Program’s
real-time execution with
smallest RAM?

5

• RT-PLRU

–Soft real-time

–Single task

• mRT-PLRU

–Extension to multiple tasks

• HRT-PLRU

–Extension to hard real-time

6

RT-PLRU: Soft real-time single
task

• Two Important Goals
– Developer-transparency

– Probabilistic guarantee of real-time with minimum DRAM

• Solution approach
– Kernel-level auto-discovery of apps. temporal intension

– Kernel-level auto-tracing of page reference sequences

– Kernel-level auto-configuration (optimal) of pinning and LRU
(RT-PLRU)

RAM

NAND flash

L

RAM

NAND flash

L

RAM

NAND flash

L

Pinned page

LRU page

L-1 pages are pinned.
Only one page is
reserved for page-

fault handling.

n

n pages are pinned.
L-n pages are reserved

for LRU.

L pages are used for LRU.

(a) LRU only (b) Pinning only (c) Pinning +
LRU

LRU mapping

7

Overall Design Flow (RT-PLRU)

kernel-level
auto-tracing

Sleeping

Time

Video
Deco-
ding

Sleeping Sleeping
Video
Deco-
ding

Video
Deco-
ding

(2,3,1,2)

kernel-level
auto configuration

Sleeping
Video
Deco-
ding

(2,3,1,2)

single
instance

probabilistic
extension for

multiple instances

production with
RT-PLRU

RT-PLRU

prototype with
sample movie

8

Comparison of required DRAM
sizes

9

Implementations

10

Demo

11

• RT-PLRU

–Soft real-time

–Single task

• mRT-PLRU

–Extension to multiple tasks

• HRT-PLRU

–Extension to hard real-time

12

mRT-PLRU:
Soft real-time Multiple tasks

• Problems to answer

Program 1

Program 2

Program 3

NAND

RAM

pinning

LRU

pinning

LRU

LRU

pinning

Minimize this size

Such that

All three tasks
“probabilistically”
guarantee their
deadlines

13

Step 1: Per-task analysis

kernel-level
auto-tracing

Sleeping
Video
Deco-
ding

Sleeping Sleeping
Video
Deco-
ding

Video
Deco-
ding

(2,3,1,2)

prototype with
sample content

Optimal PLRU for
a given size RAM

RAM size vs. opt U

14

Step 2: Convex optimization

“RAM size vs. opt U”  convex approximation

Probabilistically
meet deadlines
for both tasks

15

How much RAM saved?

16

Really work?

17

More than two tasks?

18

• RT-PLRU

–Soft real-time

–Single task

• mRT-PLRU

–Extension to multiple tasks

• HRT-PLRU

–Extension to hard real-time

19

HRT-PLRU:
Hard real-time Multiple tasks

• Problems to answer

Program 1

Program 2

Program 3

NAND

RAM

pinning

LRU

pinning

LRU

LRU

pinning

Minimize this size

Such that

All three tasks
“deterministically”
guarantee their
deadlines

20

Per-task analysis and
Convex optimization

WCET1(S1) WCET2(S2)

WCET1 WCET2

Deterministically
meet deadlines
for both tasks

21

Step 1: Per-task analysis

• WCET for a PLRU combination

x1

x2

x3

x4 x5

x6

x7

x8

x9 x10

x11

d1

d2

d3

d4

d5
d6

d7 d8 d9
d10

d11
d12

d13 d14

d15 d16

d17

d18

F1

F2

F3



































 



elayPageFaultDdxeWCET
tionPageTransij

miss

j

i

ii

11

1

max

ILP can solve this!

22

Step 1: Per-task analysis

• RAM size vs. opt PLRU in terms of
WCET

23

Step 2: Convex optimization

Schedulable!

WCET1/p1 + WCET1/p2 <=
n(2n-1)

24

How much RAM saved?

25

Conclusion

• RT-PLRU for

– Soft real-time single task  RT-PLRU

– Soft real-time multiple tasks  mRT-PLRU

– Hard real-time multiple tasks  HRT-PLRU

• It provides a potential to use NAND for code
executions of real-time applications

• More study needed for practical applications

– Trade-off between RAM cost and energy
consumption

– System bus conflict problems

- etc.

