#### NVRAMOS2009

# Real-Time Executions of Program Codes in NAND Flash Memory

2009. 10. 20

Seoul National University Chang-Gun Lee

#### Increasing Market of Flash Memory

Mobile embedded devices → shock resistance

Data and Codes are dramatically increasing → high volume

Flash Memory: Non-volatile, shock resistance, high volume



#### Why NAND is attractive for codes?

#### Increasing SW Complexity → Huge program codes

## Soft Real-Time Embedded Systems (e.g., Multimedia Smart Phones)

- -more than 5M source code lines in a smart phone
- cf. 5M source code lines in banking system

#### Hard Real-Time Embedded Systems (e.g., Automotive)





#### What is a big challenge of NAND for codes?

#### NAND Physical Characteristics

Page based sequential Read (No Random Access)

Read: 130us/page

Page based write

300us/page

Block based Erase

2 ms/block

No overwrite before erase







How to guarantee Program's real-time execution with smallest RAM?



- RT-PLRU
  - -Soft real-time
  - -Single task
- mRT-PLRU
  - -Extension to multiple tasks
- HRT-PLRU
  - -Extension to hard real-time



#### RI-PLRU: Soft real-time single task

- Two Important Goals
  - Developer-transparency
  - Probabilistic guarantee of real-time with minimum DRAM

#### Solution approach

- Kernel-level auto-discovery of apps. temporal intension
- Kernel-level auto-tracing of page reference sequences

Kernel-level auto-configuration (optimal) of pinning and LRU

(RT-PLRU)



LRU mapping

### Overall Design Flow (RT-PLRU)



number of pinned pages

optimal combination of pinning and LRU

# Comparison of required DRAM sizes



## **Implementations**









(a) shadowing (The Lord Of The Rings 1)





(b) RT-PLRU (The Lord Of The Rings 1)



(d) RT-PLRU (Starwars Ep2)

# Demo



- RT-PLRU
  - -Soft real-time
  - -Single task
- mRT-PLRU
  - -Extension to multiple tasks
- HRT-PLRU
  - -Extension to hard real-time





# mRT-PLRU: Soft real-time Multiple tasks

Problems to answer



# Step 1: Per-task analysis



prototype with sample content

kernel-level auto-tracing

(2,3,1,2)

| Deco-<br>ding | Sleeping | Deco-<br>ding | Sleeping | Deco-<br>ding | Sleeping |
|---------------|----------|---------------|----------|---------------|----------|
|               |          |               |          |               |          |



# Step 2: Convex optimization



#### How much RAM saved?



# Really work?



### More than two tasks?



- RT-PLRU
  - -Soft real-time
  - -Single task
- mRT-PLRU
  - -Extension to multiple tasks



- HRT-PLRU
  - -Extension to hard real-time



# HRT-PLRU: Hard real-time Multiple tasks

Problems to answer



# Per-task analysis and Convex optimization



# Step 1: Per-task analysis

WCET for a PLRU combination



## Step 1: Per-task analysis

 RAM size vs. opt PLRU in terms of WCET



# Step 2: Convex optimization



### How much RAM saved?



#### Conclusion

- RT-PLRU for
  - Soft real-time single task → RT-PLRU
  - Soft real-time multiple tasks → mRT-PLRU
  - Hard real-time multiple tasks → HRT-PLRU
- It provides a potential to use NAND for code executions of real-time applications
- More study needed for practical applications
  - Trade-off between RAM cost and energy consumption
  - System bus conflict problems
  - etc.