2009 NVRAMOS

# An Empirical Study using NVRAM (Non Volatile RAM)

2009. 10. 20 Jongmoo Choi http://embedded.dankook.ac.kr/~choijm

### **NVRAMOS 2009 Fall**

Operating System Support for Next Generation Large Scale NVRAM Organized by KIISE, October 19 - 21, 2009, Jeju, Korea





# Contents

- Characteristics of NVRAM
- Empirical studies
  - ✓ Performance/Energy tradeoffs on NVRAM
  - ✓ Operating system supports for NVRAM
  - ✓ Green data center with NVRAM
- Conclusion

















# Contents

- Characteristics of NVRAM
- Empirical studies
  - ✓ Performance/Energy tradeoffs on NVRAM
  - ✓ Operating system supports for NVRAM
  - ✓ Green data center with NVRAM
- Conclusion



NVRAMOS 09



# Performance/Energy Tradeoffs on NVRAM

- Experimental system
  - ✓ Hardware
    - Embedded board: ARM 9, SDRAM (64MB), NOR (0.5MB), NAND Flash memory (64MB)
    - Daughter board: 128 chips \* 4Mb FRAM (maximum 64MB)
  - ✓ Software
    - Linux kernel version 2.6.24 (Buddy system, FAT file system, ...)



Figure 1: Experimental Platform with ARM Processor, SDRAM, Flash memory and FeRAM



# Performance/Energy Tradeoffs on NVRAM

- Four different system organizations
  - ✓ RAM-Flash: Conventional embedded system organization
  - ✓ RAM-SCM: SCM as secondary storage
  - ✓ SCM-Flash: SCM as main memory
  - ✓ SCM-Only: SCM as both main memory and secondary storage



NVRAMOS 09 =



# Performance/Energy Tradeoffs on NVRAM

- Response time of applications on four organizations
  - ✓ DES: CPU-intensive application
  - ✓ MPEG decoding: memory-intensive application
  - ✓ Postmark: file-intensive benchmark



- SCM as storage is a good solution to boost file-intensive application
- SCM as main memory shows worse performance since SCM is roughly 2 or 4 times slower than SDRAM
- CPU intensive application doesn't show any marginal performance differences



# Performance/Energy Tradeoffs on NVRAM

- Energy consumptions of applications on four organizations
  - ✓ Based on Micron System Power Calculator



- SCM has great potential to reduce energy consumption
- SCM-only organization shows the best energy saving results

NVRAMOS 09



# Contents

- Characteristics of NVRAM
- Empirical studies
  - ✓ Performance/Energy tradeoffs on NVRAM
  - Operating system supports for NVRAM
  - ✓ Green data center with NVRAM
- Conclusion





# OS Support for NVRAM Derating system

- Traditional operating system
  - ✓ Memory objects (byte addressable)
    - Buffer, task structure, heap, task image, ...
  - √ File objects (persistent)
    - File, directory, metadata, ...
- How about SCM-only system?
  - ✓ Both persistent and byte addressable
  - By just tagging a name, we can convert a memory object into a file object





# Senefit Metadata in-place update Metadata



# Contents Characteristics of NVRAM Empirical studies Performance/Energy tradeoffs on NVRAM Operating system supports for NVRAM Green data center with NVRAM Conclusion



# Green Data Center with NVRAM

Structure of data center



Figure 1: Configuration of a typical data center.

- ✓ Data storage
- ✓ Servers
- ✓ Load Distributor
  - Common goal: load balancing to minimize response time
  - Our goal: load biasing to minimize energy consumption based on Instant On/Off mechanism

NVRAMOS 09 •



# Green Data Center with NVRAM

■ ZEUS (Zero Energy for Unused Server)



Figure 3: Zeus prototype with Powermeter making measurements of power usage.

- ✓ Server : SOONN (System On/Off iNstaNtly)
- ✓ Distributor
  - Load Biasing Algorithms
  - Turn off idle servers to minimize energy consumptions
  - Instant On/Off does not incur substantial delays of user requests when it turns on idle servers



# Green Data Center with NVRAM

## Evaluation Results



- Maintain the number of active servers adaptively in proportion to the number of user requests
- Reduce energy consumption by turning off unused servers.
- Energy saving brings some performance degradation, but Instant on/off makes it small (average one second of response time increasing)

NVRAMOS 09



# Conclusion

- Three experimental observations
  - ✓ Performance/Energy tradeoffs on NVRAM
    - Four system organization
      - · RAM-Flash, RAM-SCM, SCM-flash, SCM-Only
    - SCM has great potential to reduce energy consumption
    - SCM as main memory may cause performance degradation
  - ✓ Operating system supports for NVRAM
    - SCM manager
      - · Support both file object and memory object
    - Can increase performance altogether
  - ✓ Green data center with NVRAM
    - ZEUS (Zero Energy for Unused Server)
      - · Distributer: Load basing
      - · Server: Applying Instant on/off mechanism
    - Can adapt the # of active servers, leading to quite energy saving

