Flash Talk

Counting Problems in Flash Storage Design

Bongki Moon

Department of Computer Science University of Arizona Tucson, AZ 85721, U.S.A. bkmoon@cs.arizona.edu

Counting Problems

- Counting is
 - One of the fundamental problems, found in most applications
 - The study of approximate counting has a long history in computer science
- Goal of this talk is
 - Bring attention to the issues, provide a new angle to the design of flash storage systems

Counting Problems in Flash

- Wear Leveling
 - Keep track of block erase counts
 - For a 128 GB SSD with 1 million blocks
 - A (sub)word for each block requires 2~4 MB RAM
- Garbage Collection
 - Keep track of # of valid pages in blocks
 - For example, FMAX and FAST
 - For a 128 GB SSD with 1 million blocks
 - A byte for each block requires 1 MB RAM

Counting Problems in Flash

- Hot / Cold Data Separation
 - Keep track of update counts for all pages(?)
 - For a 128 GB SSD with 64 million pages
 - A (sub)word for each page requires 128~256 MB RAM
- Counting Bloom Filter [Hsieh TOST'06]
 - Approximate update frequencies by storing relative frequencies in a fixed number of fixed-length bit-vectors
 - Aging (divide-by-2) occurs when any counter overflows
 - Accuracy will be degraded seriously at the presence of a few very hot items, because aging kicks in too often
 - Almost impossible to separate cold data pages from warm ones

Approx Counting

- Numerous approaches
 - Unbiased vs biased
 - Memory use: linear vs. logarithmic
 - **-** ...
- Log Count
- Lossy Couting
- AMS Sketch
- •

Counting Heavy Hitters

- Manku & Motwani [VLDB'02]
 - Biased estimation of frequencies for heavy hitters
 - For all heavy hitters $(f_{true} > \tau = sN)$, without false negatives, the estimated frequency fest is found
 - Always underestimates but with margin $\leq \varepsilon N$, that is, $f_{est} \leq f_{true}$ $\leq f_{est} + \varepsilon N$
 - N = # of objects seen so far, $0 < \mathcal{E} << s < 1$
- Sticky Sampling and Lossy Counting
 - LC deems superior to SS, and uses O(log N) memory in the worst case

AMS Sketch

- Alon, Matias and Szegdy [STOC'96]
 - Randomized linear projection of a frequency vector $F = (f_1, ..., f_n)$ for a set of n objects in stream S(|Dom(S)| = n)
- Randomized linear projection
 - f_i denotes the frequency of i in S
 - v_i is a four-wise independent binary random variable
 - $v_i = +1$ or -1 with equal probability, i.e., $Pr(v_i = +1) = Pr(v_i = -1) = \frac{1}{2}$
 - $Pr(4-tuple \ of \ v_i = 4-tuple \ of \ \{-1,+1\}) = 1/16$

Unbiased Estimation by AMS

- To compute the sketch X
 - Initialize X=0
 - Add v_i to X each time i appears in S
 - $X = \sum f_i v_i$
- To estimate f_q (the frequency of q)
 - $E(X \cdot v_a) = E((f_1 v_1 + \dots + f_n v_n) v_a) = E(f_q v_q^2) = f_q$
 - Linearity of expectation
 - $E(v_i^2) = 1$, because v_i^2 is either $(-1)^2$ or $(+1)^2$
 - $E(v_i v_i) = 0$ for $i \neq j$, because $Pr(v_i v_i = +1) = Pr(v_i v_i = -1) = \frac{1}{2}$
 - Thus, $X \cdot v_q$ is an unbiased estimator of f_q

How Accurate?

- Not so accurate
 - $Var(X \cdot v_q) \leq |SJ(S)| = \sum f_i^2$
- To improve the accuracy
 - Maintain $s_1 \times s_2$ independent and identically distributed instances of X, say X_{ij}
 - Compute s₂ (column-wise) averages of X_{ij} · v_q
 - $\mathbf{Y}_{j} = \mathbf{avg}(\mathbf{X}_{1j} \cdot \mathbf{v}_{q} + \dots + \mathbf{X}_{s1,j} \cdot \mathbf{v}_{q})/\mathbf{S}_{1}$
 - Then, take the median of them as an estimate

Memory Usage by AMS

- s₁ controls accuracy, and s₂ controls confidence
 - The values of s₁ and s₂ are determined by target error bound and confidence level
 - Still, the total memory use is O(log/S/ + log n)

Approx Counting for Wear Leveling

- AMS sketch adopted for wear leveling
 - Store synopsis of block erase counts instead of actual counts, consuming much less memory
 - Patent KR 10-0817204 [Min & Moon, March 2008]

Problem Solved?

- Far from it!
 - AMS returns an approximate count for a query
 - But it keeps neither a hot list nor a cold list
- Dynamic wear leveling
 - Select a youngest block from a free list
 - AMS may work well if the free list is short
 - By submitting each block in the free list as a query
- Static wear leveling
 - Need find blocks storing cold data
 - AMS will be extremely slow!
 - By submitting ALL blocks as a query

SW Leveler

- Chang et al. [DAC 2007]
 - Use a bit vector (BET) to mark blocks erased during a certain period; BET is just a set of Boolean flags
 - Space-efficient
 - For an SSD of 128GB (1 M blocks), the size of BET is just $128KB/2^k$ (for $k \ge 0$)
- However, serious drawbacks
 - Any block <u>un-erased during the period</u> can be randomly chosen as a cold data block; very inaccurate
 - Memoryless, because BET is reset between the periods
 - No long-term information on block erasures is accumulated

Hot Separation by AMS

- Hot data blocks can be identified by AMS easily
 - AMS can handle deletions
 - Heavy hitters can be managed in a heap separately

Hot Separation by AMS

- For low frequency items
 - Accuracy of approximation improves without heavy hitters

Static Wear Leveling

- Still, a big question remains for Static WL
 - Identify cold data blocks, not only the hot ones
 - Biased (or underestimating) approximations are useless
- **AMS + BET?**
 - When a triggering condition is satisfied, look for unerased blocks from BET
 - Inquire the AMS Sketch for the approximate erase count of each un-erased block
 - Quickly find cold data blocks if the number of un-erased blocks is small; further evaluation is in order

Concluding remarks

- TB-scale flash storage devices are on the horizon
 - Scalable and economical designs are must
- Algorithmic innovations will make a difference
 - That's where real competitiveness comes from!