MLC 스토리지의 신뢰성/수명 이슈

2010년 4월 19일

백 승 훈, 공학박사 (sung.baek@samsung.com) 삼성전자㈜, 메모리 사업부, SW선행연구팀

NVRAMOS 2010

Lifetime & Reliability of NAND

Degradation of NAND reliability from scaling requires stronger ECC technologies.

Understanding SSD Lifetime

SSD Lifetime = f{WAI, Performance(IOPS or MB/s)}

Estimated Lifetime (year) =
$$\frac{(Host write per P/E) \times P/E Limit}{Daily usage \times 365 day/year}$$

, where Host write per P/E = # of Host writes inducing Erase cycle of NAND Block = 1/WAI , where Daily usage depends on performance (i.e., IOPS or MB/s)

- WAI (Wear Acceleration Index)

$$WAI = \frac{Erase\ cycle(P/E)}{\#of\ Host\ Writes\ (\approx IOPS)}$$

cf) WAF (Write Amplification Factor)

$$WAF = \frac{Total\ amount\ of\ Physical\ Write}{Total\ amount\ of\ Host\ Write}$$

SSD lifetime depends on 1. Host workload, 2. WAF(FTL Efficiency)

수명과 신뢰성 이슈 사항

- WAI/WAF을 낮추기 위한 소프트웨어 기술 필요
 - Wear-Leveling
 - Hot/Cold Seperation
 - Mapping Algorithm
 - Very Low WAF
- 다양한 신뢰성 수준을 만족할 수 있는 기술 필요
 - JEDEC/SNIA, SSD 신뢰성 표준화 진행 중
 - Client SSD UBER: 10-15
 - Enterprise SSD UBER: 10⁻¹⁷
- 요구되는 신뢰수준의 ECC크기가 Spare크기보다 커져야만 한다면?