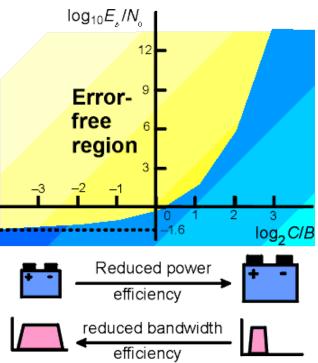
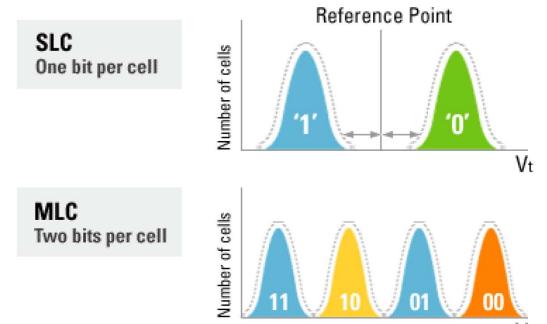
Capacity-approaching Codes for Solid State Storages


Jeongseok Ha, Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST)

Contents

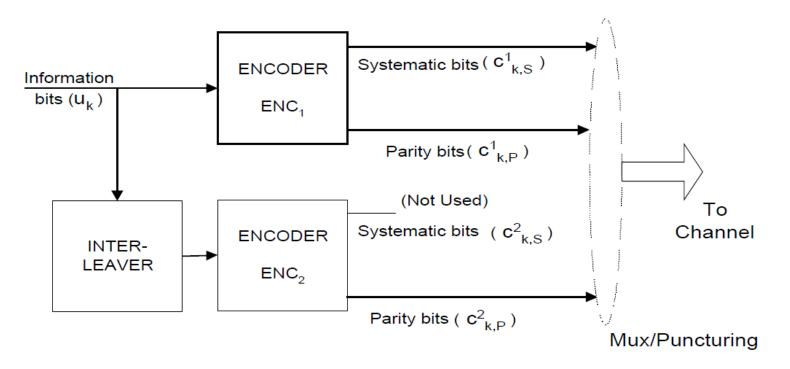
- Capacity-Approach Codes
 - Turbo Codes,
 - Low-Density Parity-Check Codes
 - Behaviors of Error-Control Codes
- Error Control Codes in Solid State Drives
 - Successes in Magnetic Storages
 - Challenges
 - Limited Information
- Summary


Capacity-Approaching Codes

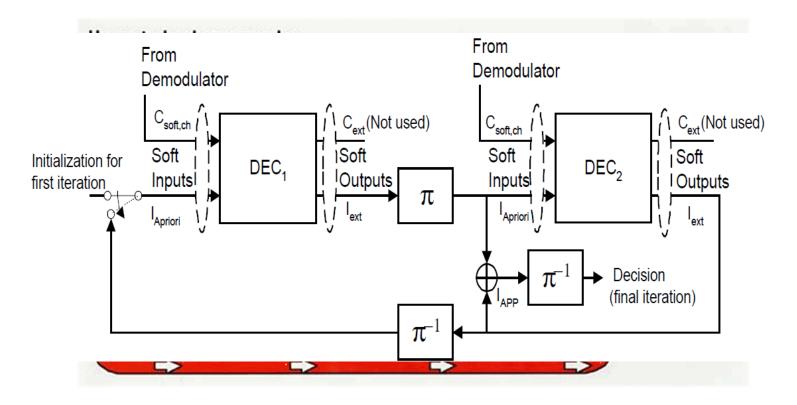
- Channel Capacity
 - The upper bound on the amount of information that can be reliably transmitted over a communication channel
- Noisy-Channel Coding Theorem
 - The capacity is the limiting information rate that can be achieved with arbitrary small error probability

NAND Flash Memories as Communication Channels

- MLC has a smaller noise-to-signal power ratio (SNR)
- The maximum number of symbol per MLC is predicted by the analysis of channel capacity


 In 1993 (30 years after LDPC codes), C. Berrou, *et. al.* presented their paper, "Near Shannon limit errorcorrecting coding and decoding: Turbo codes" in ICC93

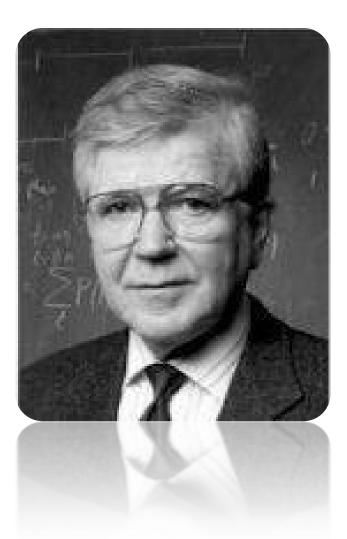
• The first practical codes approaching Shannon limit


• Parallel (or Serial) Concatenation of Convolutional Codes

- Encoder
 - Parallel Concatenated Convoluational Codes

- Turbo Decoding
 - Iterative Decoding

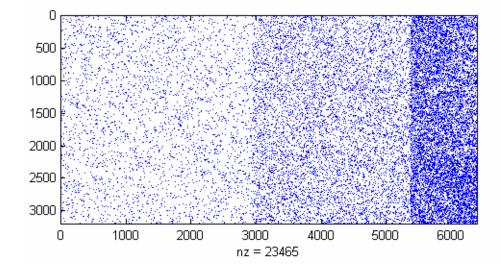
Become Dominating Error-Control Codes in Communications


Application	Turbo code	Termination	Polynomials	Rates	
CCSDS (deep space)	Binary, 16-state	Tail bits	23, 33, 25, 37	1/6, 1/4, 1/3, 1/2	
UMTS, cdma2000 (3G mobile)	Binary, 8-state	Tail bits	13, 15, 17	1/4, 1/3, 1/2	
DVB-RCS (return channel over satellite)	Duobinary, 8-state	Circular	15, 13	1/3 up to 6/7	
DVB-RCT (return channel over terrestrial)	Duobinary, 8-state	Circular	15, 13	1/2, 3/4	
Inmarsat (M4)	Binary, 16-state	No	23, 35	1/2	
Eutelsat (Skyplex)	Duobinary, 8-state	Circular	15, 13	4/5, 6/7	
Eutelsat (Skyplex)	Duobinary, 8-state	Circular	15, 13	4/5, 6/7	

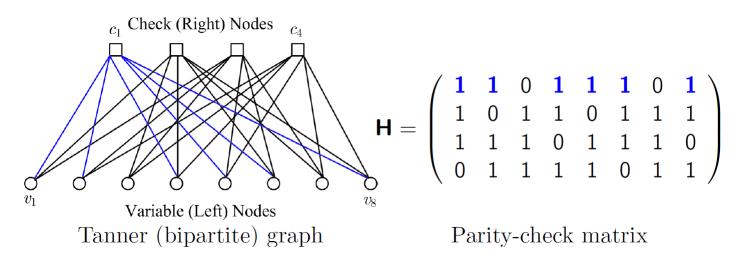
Low-Density Parity-Check Codes

• R. G. Gallager (1931 -) proposed "Lowdensity parity-check codes," IRE trans. Inform. Theory, IT-8, pp. 21-22, Jan. 1962

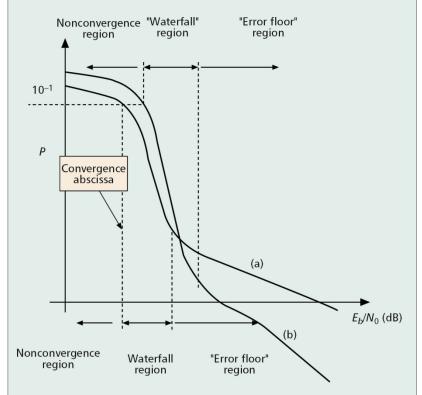
• D. J. C. Mackay and R. M. Neal rediscovered, "Near Shannon limit performance of lowdensity parity-check codes," *Electron Lett.*, vol. 32, pp. 1645-1646, Aug. 1996


• Belief-propagation algorithm gives us MAP (ML) decoding results, which is working under the message-passing framework

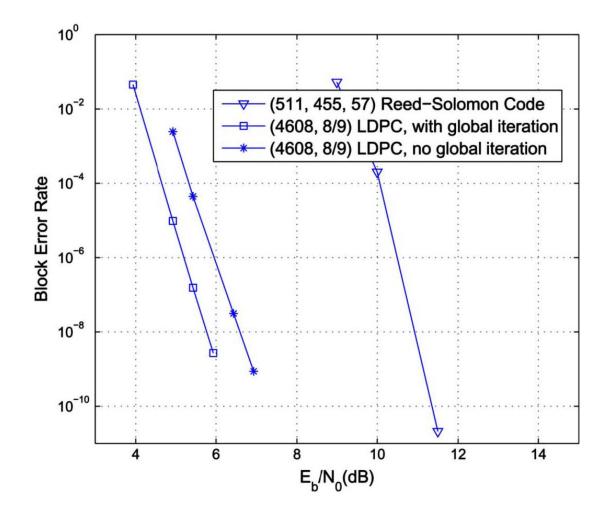
Low-Density Parity-Check Codes


- What Are LDPC Codes?
 - Linear codes
 - Small number of non-zero terms in parity-check matrices

 $\mathbf{0} = \mathbf{c} \cdot \mathbf{H}^{\mathcal{T}}$


Low-Density Parity-Check Codes

- Representation of an LDPC Code
 - Either Tanner (bipartite) graph or parity-check matrix


Behaviors of Error Control Codes

- Waterfall and Error Floor Regions
 - We are more interested in the error-floor region
 - Tradeoff
 - between the performances of waterfall and error floor regions
 - Analysis techniques
 - Waterfall Region
 - Density evaluation, EXIT chart
 - Error Floor Region
 - Minimum distance analysis
 - Trapping set analysis

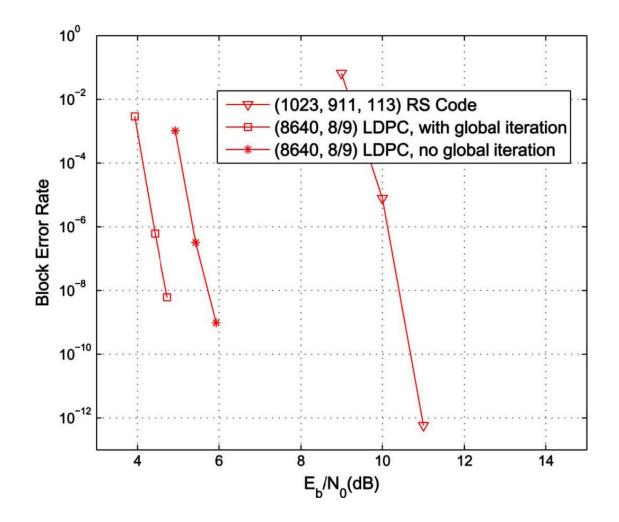
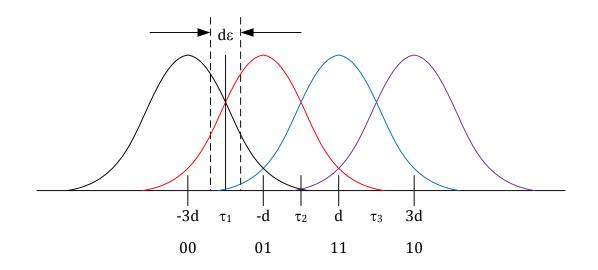
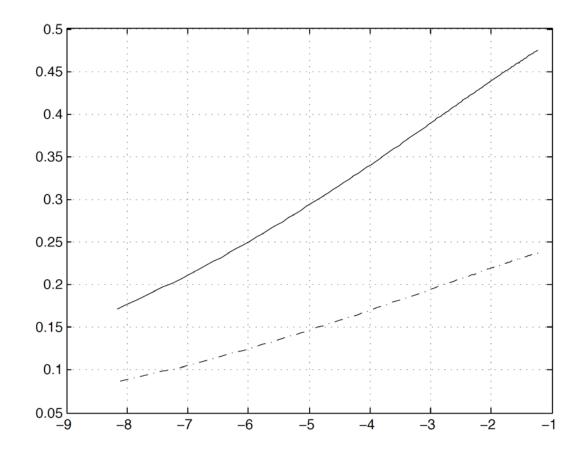


Figure 3. *Qualitative behavior of the error probability vs.* E_b/N₀ *for concate-nated codes with interleavers under iterative decoding.*

Successes in Magnetic Storages

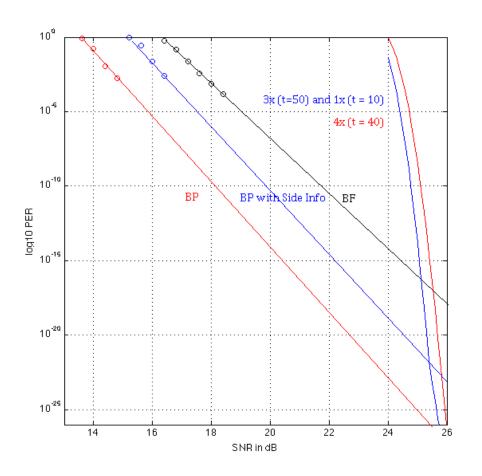


Successes in Magnetic Storages



- Limited Information from NAND Flash Memory Devices
 - Hard decided bits are available
 - Huge performance loss
 - more than 2dB loss for the convoluational codes
 - Decoding speed and latency
 - High speed belief-propagation decoders need a parallelized structure
 - Bigger die size
 - Iterative algorithms need longer latency

 Performance of Error Control Codes with Side Information, Erasure

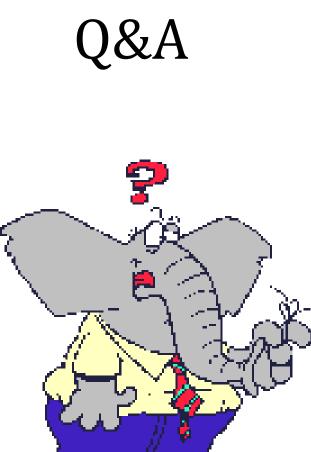

$$P_E^B(\text{SNR}) = \frac{1}{\log_2 M} \times \frac{2(M-1)}{M} Q\left(\sqrt{\frac{3}{M^2 - 1}} \text{SNR}\right) \qquad P_{(E|\mathcal{E})}(\text{SNR}) = \frac{1}{\log_2 M} \frac{\Pr(E \cap \mathcal{E})}{\Pr(\mathcal{E})} \\ = \frac{1}{\log_2 M} \frac{Q\left(\sqrt{\frac{3}{M^2 - 1}} \text{SNR}\right) - Q\left(\sqrt{\frac{3}{M^2 - 1}} \text{SNR}(1 + \epsilon/2)\right)}{Q\left(\sqrt{\frac{3}{M^2 - 1}} \text{SNR}(1 - \epsilon/2)\right) - Q\left(\sqrt{\frac{3}{M^2 - 1}} \text{SNR}(1 + \epsilon/2)\right)}$$

Symbol and bit error rate when the erasure event happens; $log_{10}(Pe)$ for x axis and then condition probabilities for Y axis

• Equivalent Channel Models

- The line in blue 3x(8892,8192,50) BCH Codes and 1x(8332,8192,10) BCH Code
- The line in red 4x(8751,8192,40) BCH Codes

Design goal


10⁶ pages (4GB) of everyday access Less than 1% undetectable errors in 1000 days of continuous use

 $\begin{array}{l} 1 - (1 - PER)^{10^6 \times 1000} \\ \approx 1 - (1 - 10^9 \times PER) \leq 0.01 \\ \rightarrow PER \leq 10^{-11} \end{array}$

Summary

- Introduction to Capacity-approaching Codes
- Discussions about Challenges in Solid State Drives

- Active Collaborations with People in Other Fields Are in Need
 - Especially with Device Engineers

Æ

• Decoding Speed

Processing Modules (PM)	FFs	Memory	Ratio: 1/2	Ratio: 2/3A	Ratio: 2/3B	Ratio: 3/4A	Ratio: 3/4B	Ratio: 5/6
1	2.8K	160Kbits	0.65 5.2 Mbit/s 2.6 Mbit/s	0.74 5.92 Mbit/s 3.94 Mbit/s	0.74 5.92 Mbit/s 3.94 Mbit/s	0.79 6.32 Mbit/s 4.74 Mbit/s	0.79 6.32Mbit/s 4.74 Mbit/s	0.84 6.72 Mbit/s 5.60 Mbit/s
6	14K	160Kbits	3.71 29.68 Mbit/s 14.84 Mbit/s		· · · · ·			· · · · · · · · · · · · · · · · · · ·
8	20K	300Kbits	· · · · · · · · · · · · · · · · · · ·	5.66 45.28 Mbit/s 30.18 Mbit/s		· · · · · · · · · · · · · · · · · · ·		6.42 51.36 Mbit/s 42.8 Mbit/s