Flash Memory: Key Signal Processing Issues

Jaekyun Moon

EE Dept KAIST

April 19, 2010

NVRAMOS Forum

HDD vs SSD: Price Trend

SSD prices were assumed to fall by about <u>60% annually</u>.

연도별 HDD와 SSD의 GB당 가격 비교 (출처: iSuppli)

3

KAIST

Home Storage Server

Home Storage Server

1TB NAS Server, 480/12 Mbps \$138.00

Price: \$0.14/GB

Flash Memory in IPad

\$499 for 16G iPad versus \$699 for 64G iPad

Sustaining Storage Density Growth...

PROCEEDINGS OF THE IEEE | Vol. 96, No. 11, November 2008

Outline

- How many raw errors can we realistically correct using advanced SSP?
 - LDPC code versus BCH
- Essential Ingredients
 - Channel characterization (J. Moon)
 - Capacity-achieving coding (J.S. Ha)

MLC NAND Flash Architecture

A 2-plane, 4K-page MLC architecture. The 4K page has 4,096 bytes of data and 218 bytes of spare area.

A 16Gb MLC NAND Flash Example

SSP Signal Flow

BCH Code Performance: Raw BER vs Corrected WER

Communications & Storage Lab

KAIST

LDPC Code Performance

LDPC can handle 10^(-1.913)*9830=120 error bits on average per 9830 bits (Probably ideal and optimistic).

Real LDPC Error performance (10G Ethernet) – no visible error floor (gives us hope!)

Source: G. Ungerboeck, 2010

KAIST

Communications & Stora

Essential Ingredients in Advanced SSP

- Accurate channel characterization
- Soft information generation and processing

Channel Modeling: Signal–Level Characterization of Cell Correlation (Disturb)

Channel Modeling: Cell Correlation

Feed the system with known data \mathbf{x} . Observe \mathbf{r} .

Characterize the system enough, so for new data **x**' we would know what **r**' is.

Channel Identification Problem

Feed the system with known data **x**.

Adjust f() until **e** is minimized (a sequential update algorithm is used).

Once **e** stabilizes, f() should resemble the system closely.

We in essence are fitting the unknown box with a partially unknown function (a certain structure is imposed)

KAIST

Characterized Channel

Example of f(): Linear FIR Filter

Popular model for one dimensional inter-symbol interference

A general f(): RAM

f() is a RAM and its contents get updated in the direction to minimize **e**. The write values of a cell and its affecting cells act as the pointer (address) to a particular location in the RAM. The RAM content is the read value of the victim cell.

After feeding the system and the model with a long data \mathbf{x} , all locations of the RAM will have been updated and stabilized.

RAM Update Process: An Example of "Local" Pattern

RAM Update Process: An Example of "Local" Pattern

RAM Update Process: An Example of "Local" Pattern

KAIST

RAM Update Process

A general f(): RAM

Assumption: correlation among a cell and its affecting cells is positionshift-invariant.

If x_k is affected by x_{k-1} and x_{k+1} in a certain way, then x_{k+1} will be affected by x_k and x_{k+2} in the same way.

Some of the discussion points …

- Are there such thing as the rough "local" pattern and can device people figure this out, if so?
 - Exact function can be obtained via statistical identification as described
- Feasibility of extracting soft information

