

April 20, 2010

Sam H. Noh

NECSST Lab. Hongik University

National Research Laboratory

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

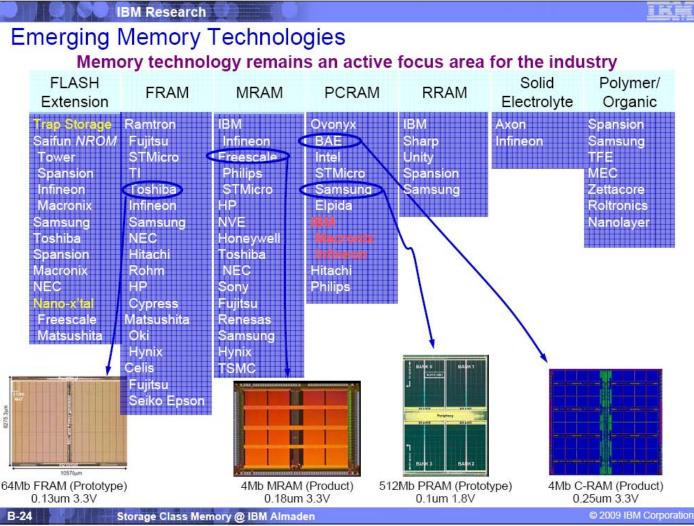
(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing

Part I: <u>Non-Volatile Memory Technology</u> Part II: Green Computing

Storage Class Memory (SCM)

• Definition

- A class of data storage/memory device
 - FAST'09 tutorial
 - Freitas, Wilcke, Kurdi, and Burr


• Characteristics

- Nonvolatile
 - Storage property such as HDD and Flash
- Random byte addressable
 - RAM property such as DRAM and SRAM

SCM development trend (FAST'09 Tutorial)

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

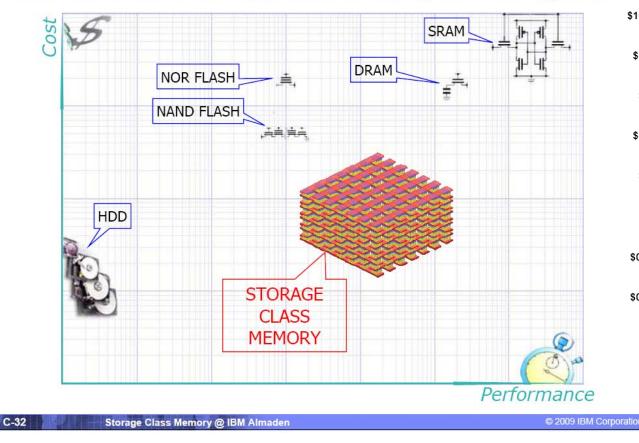
SCM perspectives

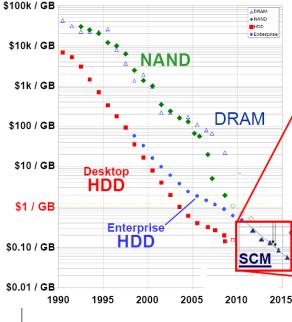
• Current technology in the market

- Numonyx: 128Mb PCM
- Ramtron: 4Mb FeRAM
- Freescale: 4Mb MRAM
- Development trend
 - More than 30 major IT companies such as Intel, Samsung, Toshiba, etc.
 - Samsung : start production of 512Mb PCM
 - Press Release, Sept. 22, 2009
 - Toshiba: 128Mb FeRAM prototype
 - Press Release, Feb. 8, 2009

• Perspectives (IBM Almaden Research Center)

- Widely deployed in data center systems by 2012
- Fully replace HDD by 2020

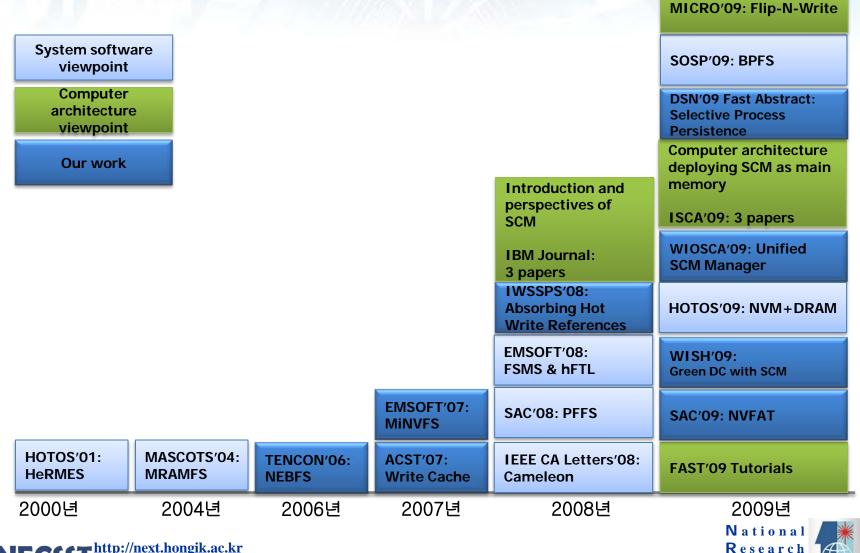




SCM performance and cost (FAST'09 Tutorial)

IBM Research

How does SCM compare to existing technologies?



SCM in the market

		Flash memory		RAM	SCM		
		NAND	NOR	SDRAM	РСМ	FeRAM	MRAM
Non-volatility		Yes	Yes	No	Yes	Yes	Yes
Access units	Read/ Write	Page	Byte	Byte	Byte	Byte	Byte
	Erase	Block	Block	-	-	-	-
Access speed	Read	12 us	110 ns	~20-50 ns	>	55 ns	35 ns
	Write	200 us	80 us	~20-50 ns	>>	55 ns	35 ns
	Erase	2 ms	0.6 s	-	-	-	-
Endurance (# of writes)		10 ⁵	10 ⁵	10 ¹⁵	10 ⁸	10 ¹²	10 ¹⁵
Active Current		10~30 mA	14~25 mA	70~110 mA (+ Refresh: 160mA)	<	18 mA	55~155 mA
Standby Current		10~50 uA	5 uA	2~28 mA (+ Self-refresh: 1.5~3mA)	<<	5 uA	9~28 mA

Interest in SCM is growing

Laboratory =7148974

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

SCM Viewpoints

• Storage

- Non-volatile characteristic
 - <u>Storage</u> Class Memory
- Conventional storage devices are block devices
 - But, SCM is byte addressable

• Memory

- Byte addressable characteristic
- Conventional memory is volatile
 - But, SCM is non-volatile \leftarrow our emphasis

(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing

Part I: Non-Volatile Memory Technology Part II: <u>Green Computing</u>

Green...

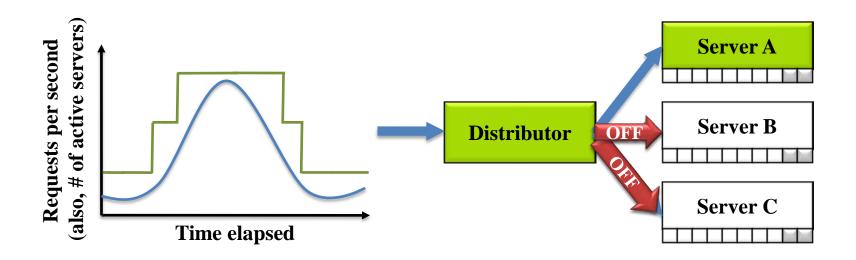
- Technological buzz word
- Socially correct
- Politically...
- Various approaches

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

Not just lights...idle...shut it down

(Barn Car

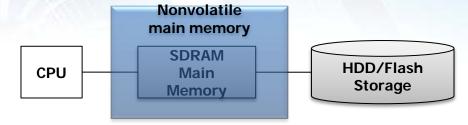
...even data centers


- Tremendous energy consumed by data centers
 - Billions of kWh consumed by U.S. data centers
 - Billions of dollars per year for maintaining data centers
- Focus on idleness of systems
 - Average 20~30% system utilization in data centers
 - Idle servers consume 60% of peak power

Ideal data center

• Turn off idle servers

- turn on only to satisfies QoS

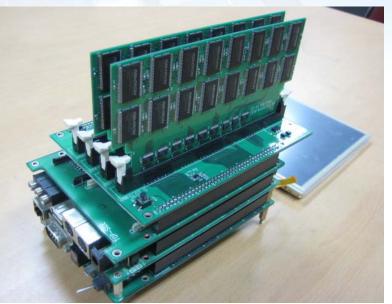

Challenges in realizing the ideal DC

- Systems not responsive enough for practical use
- Compromises encapsulation
- Very short bursts of idleness
- Need for replication
- Inactive-to-active energy penalty

Use SCM to realize ideal data center

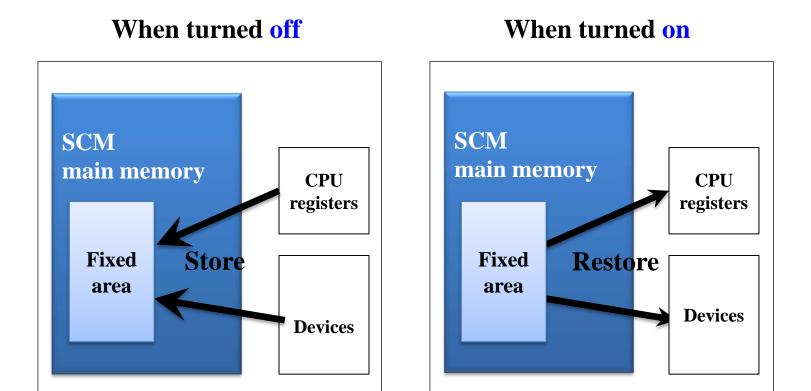
• SCM as main memory

- plus, non-volatile
 - Unorthodox?
 - Process state is preserved with power off
- Notion of Persistent Computing
 - "as if the system had always been on"
 - Despite power off period in between
- Turn off when idle; turn back on when needed
 - must be fast...but, how fast is fast enough?


(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing SOONN (System On/Off iNstaNtly) 瞬: Blink of an eye

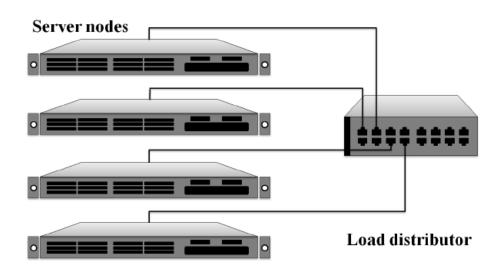
Experimental platform

Component	Specification		
CPU	PXA255 400MHz		
SDRAM	32MB X 2ea		
NAND Flash	32MB X 2ea		
Boot Flash	512KB		
SCM(FeRAM)	0.5MB X (up to) 128ea		
Peripherals	UART, LCD, JTAG,		



• Linux 2.6.21

(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing SOONN (System On/Off iNstaNtly) 瞬: Blink of an eye


• Persistent computing

Implementation of ZEUS

- ZEUS: Zero Energy for Unused Servers
 - Server: SOONN system
 - Distributor: Linux Virtual Server project based IPVS software

Experimental environments

• Hardware setup

	CPU	Main memory	NIC	Notes
4 Servers	ARM PXA255 XScale 400MHz	32MB FeRAM	10Mbps	Apache Web server
1 Distributor	x86 Intel 2GHz	2GB DDR3 SDRAM	100Mbps	
1 Client	x86 Intel 2.4GHz	2GB DDR3 SDRAM	100Mbps	Proxycizer trace replayer

• Server configuration

 Servers only execute a CPU-bound CGI document that consumes 0.05 seconds

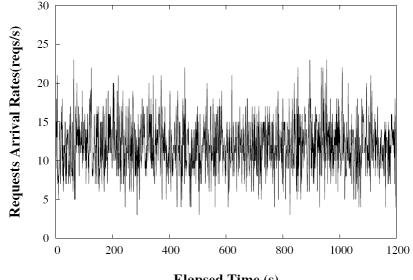
NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

Single SOONN server

• Power and response time

- Zero power for SOONN server at idle
- Send requests at maximum rate from time 10
 - Roughly 4 seconds for the first request (1.17 seconds for "ready to respond")

Elapsed Time (s)

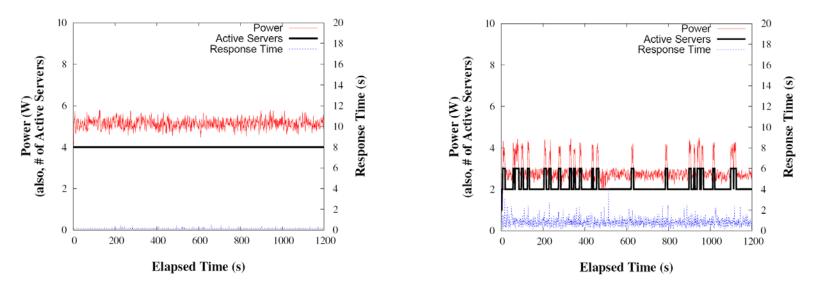


Synthetic workload

• Requests sent with Poisson distribution

- 14,400 requests during a 20 minute long experiment
 - Average of 12 requests per second

Elapsed Time (s)

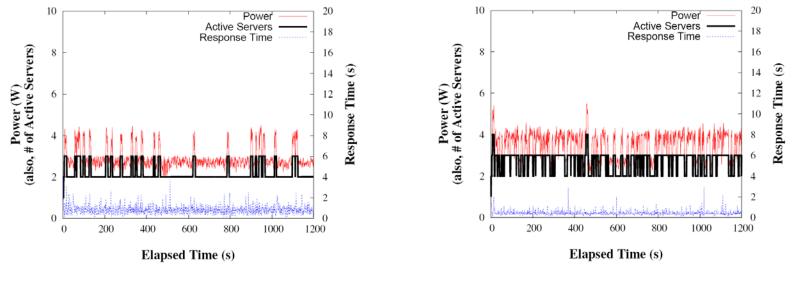


23

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology (Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing 24 BUT: Biasing with Upper Threshold

• Significant energy savings

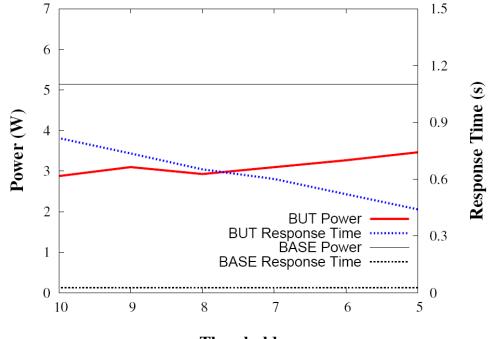
- ZEUS is responsive
- Performance degradation from user response time viewpoint


(a) BASE: Conventional data center

(b) ZEUS: BUT Threshold 10 (BUT10)

Effect of BUT threshold

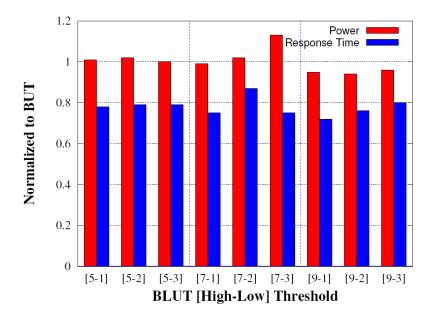
- Lowering upper threshold turns systems on earlier
 - Increase power usage, but improve response time


(b) ZEUS: BUT Threshold 10 (BUT10)

(c) ZEUS: BUT Threshold 5 (BUT5)

(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing 26 Trade-off: power vs. response time

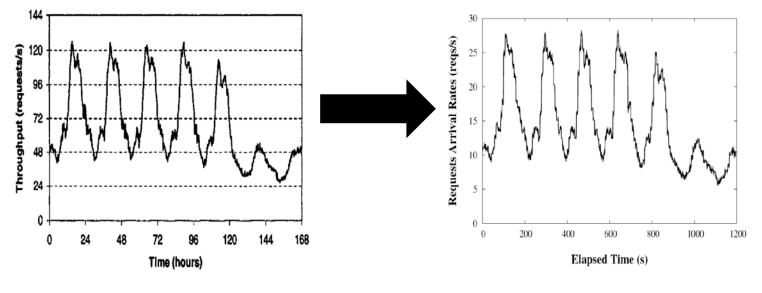
• Power savings with configurable service of quality


Threshold

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing 27 BLUT: BUT with Low Threshold

- BUT extension to adopt load balancing feature
 - Decide the number of servers currently needed
 - Balance requests among turned on servers

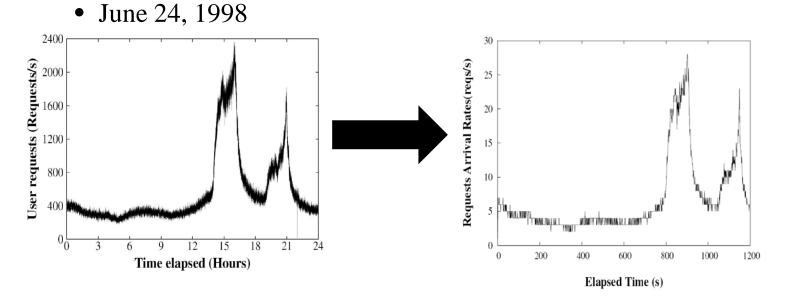


Realistic workload #1

• "Real IBM trace"-like

- Maximum 28 requests/sec (scale down of 40)
- 20 minutes long (scale down of 500)

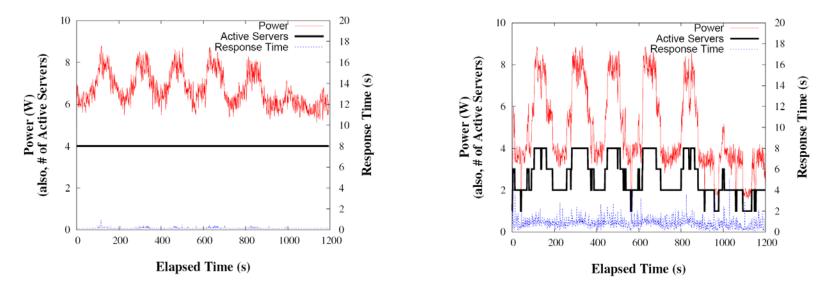
IBM Trace



Realistic workload #2

• "WorldCup98 trace"-like

- A day long trace in the 1998 World Cup



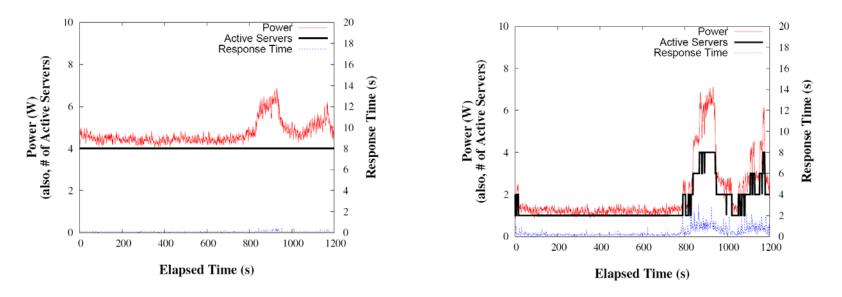
Adaptiveness of ZEUS

• "Real IBM trace"-like

- Provide service with adaptive # of active servers
 - Highly fluctuating user request patterns

(a) BASE: Conventional data center

(b) ZEUS: BUT Threshold 10 (BUT10)



(1/2)

Adaptiveness of ZEUS

• "WorldCup98 trace"-like

- Energy consumed proportional to system utilization

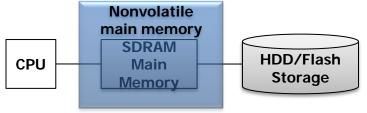
(a) BASE: Conventional data center

(b) ZEUS: BUT Threshold 10 (BUT10)

31

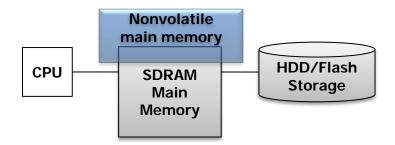
(2/2)

Green data center summary


- First empirical proof-of-concept study using SCM
- SOONN
 - Swift on/off system
- ZEUS
 - Data center that reacts nimbly to workload dynamics
- However,...

Is this realistic?

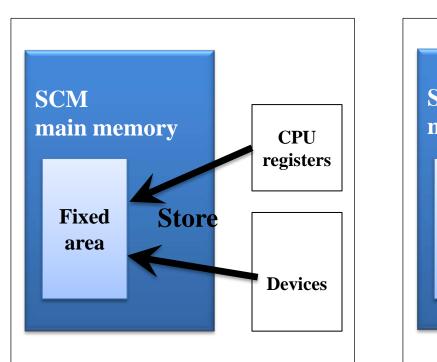
- SCM only main memory
 - Instant on/off done really fast
 - Persistent computing

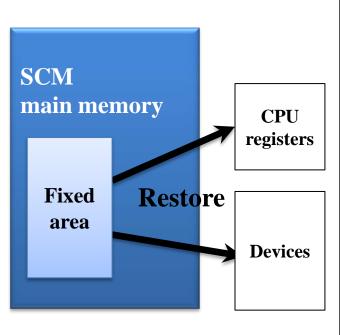

- But, for the immediate future
 - a hefty price tag
 - unfriendly performance numbers

A more feasible solution?

• SCM + DRAM main memory

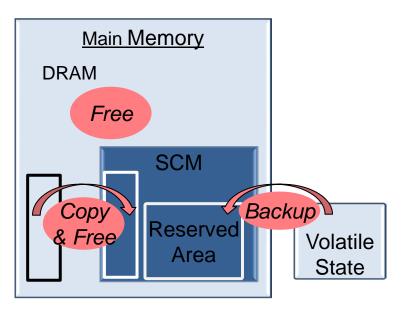
- Still, provide instant on/off
- Persistent computing, but only partially
 - lose some processes, but by choice



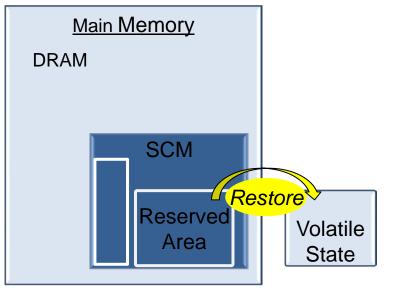

Recall SOONN (System On/Off iNstaNtly)

• Persistent computing

When turned off



When turned on



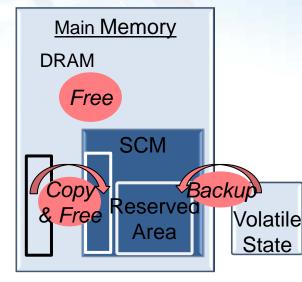
(Unorthodox?) Use of Non-Volatile Memory Technology for Green Computing 36 Instant off/on with SCM+DRAM

Instant Off

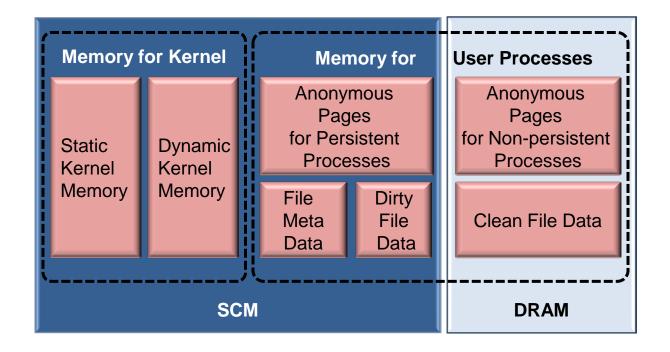
Instant On

What tasks are kept in SCM?

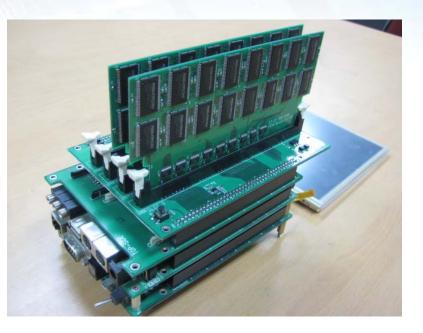
Task Class			Necessity	Choice
Kernel Thread			Mandatory	0
User Process	Spawned During Boot	System Request	Mandatory	Ο
		User Request	Optional	Ο
	Spawned After Boot		Optional	Х


• Persistent process

- processes persistent after instant off/on sequence
- Non-persistent process
 - processes unavailable after instant off/on sequence


Effect of losing non-persistent processes

- Negative
 - Lose part of previous existing state
- Positive
 - Reduced instant on/off time
 - Decrease housekeeping overhead to turn off
 - Reduced SCM capacity
 - Resulting in lowered cost
 - Quick reclamation of free DRAM pages
 - Pseudo-rebooting
 - Start again from clean slate


Memory Objects in SCM vs DRAM

Implementation Platform

Component	Specification		
CPU	PXA255 400MHz		
SDRAM	32MB X 2ea		
NAND Flash	32MB X 2ea		
Boot Flash	512KB		
SCM(FeRAM)	0.5MB X (up to) 128ea		
Peripherals	UART, LCD, JTAG,		

• Linux 2.6.21

Experimental Measurements

• Instant off/on sequence

- Measurable steps
 - user space: gettimeogday()
 - kernel space: sys_gettimeofday()
- Use estimated value when steps cannot be measured

 $\frac{1}{400MHz}$ × Number of Instructions × Cycles per Instruction

Experimental Measurements

Action	Step	Method(#of instruction)	$\operatorname{Time}(\operatorname{sec})$
	Initiation	Measurement	0.07
Instant off	<pre>suspend_prepare()</pre>	Measurement	1.26
	Device power down	Measurement	0.30
	Backup registers	Estimation(49)	0.00
		1.63	
	Bootloader	Estimation(1048784)	0.01
	Restore registers	Estimation(42)	0.00
	Device power up	Measurement	0.30
Instant on	<pre>suspend_finish()</pre>	Measurement	0.02
	Su	0.33	
	Restart net device	Measurement	1.51
		1.84	

Summary

- SCM overview
- Green computing using SCM
 - Novel notion of persistent computing
 - SOONN and ZEUS as persistent computing application
 - Swift on/off system
 - Data center reacts nimbly to workload
 - First empirical proof-of-concept study using SCM
 - Hybrid SCM + DRAM configuration
- Future work

Future work

- Short/mid term
 - Dependability
 - Transactions
 - Apply SOONN to realistic applications
 - Develop real ZEUS
- Long term
 - All other fields of Computer Science?

Conclusion

- SCM: Interesting?
- SCM: Simply new storage?
- SCM: Simply a replacement of RAM?
- SCM: Revolutionary technology?
 - Implication on various computing fields?
 - Architecture?
 - Operating systems?
 - Database?
 - A whole new field of applications?

Thank you!!

http://next.hongik.ac.kr

NECSST http://next.hongik.ac.kr Next-generation Embedded / Computer System Software Technology

