Power Analysis for Flash Memory SSD

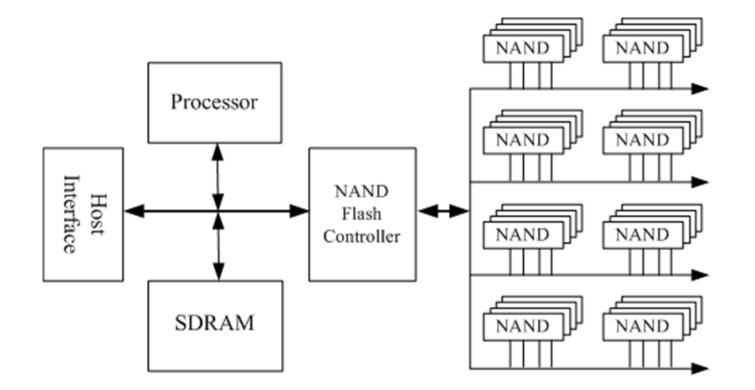
Dongkun Shin Sungkyunkwan University dongkun@skku.edu

Introduction

- SSD requires low power/energy than does HDD.
 - attractive to mobile systems and power-hungry data centers
- Recent SSDs use
 - Intensive parallel schemes → Peak Power
 - Large amount of DRAM buffer
 - Energy(SSD) ≈ Energy(HDD) ?
- many researches on power analysis and optimization for HDD.

Introduction

- To optimize Energy(SSD), need to characterize the power/energy consumption of SSD.
- depending on the I/O request patterns
- several hints on energy optimization.
- enables to extract several architectural features of target SSD which vendors do not provide to users


Related Works

- Seo: Empirical analysis on energy efficiency of flash-based SSDs. HotPower'08
 - only simple access patterns, no detailed analysis
- Park: Power modeling of solid state disk for dynamic power management policy design in embedded systems. SEUS '09
 - power consumption simulator for SSD.
 - consider parallel flash chip accesses
 - too simple power model
- Lee: Advances in flash memory SSD technology for enterprise database applications. SIGMOD '09
 - Single SSD can outperform several HDDs comprising RAID for both power consumption and I/O performance.
- Mohan: FlashPower: A detailed power model for NAND flash memory. DATE '10

SSD Architecture

Target SSDs

- The performance/power of SSD is determined by
 - Cell type of flash memory
 - DRAM buffer size
 - # of parallel flash chips
 - Firmware
- SSD(H) provides higher I/O performances
 - uses a larger internal buffer and a more intelligent FTL.

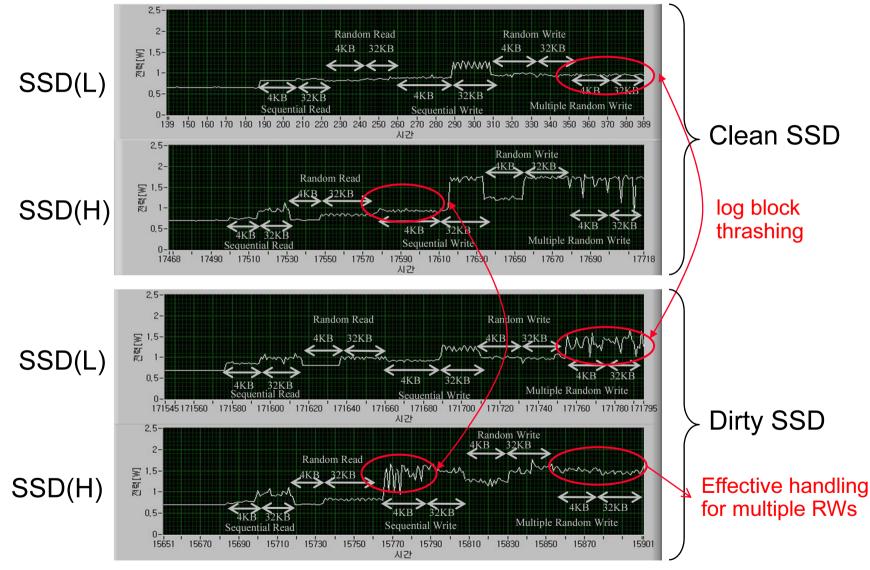
	SSD(L)	SSD(H)	
Capacity	$64 \mathrm{GB}$	$30 \mathrm{GB}$	
Flash Chips	K9NCG08U5M \times 8	K9GAG08U0M \times 16	
Memory Type	SLC	MLC	
DRAM	32 MB	$64 \mathrm{MB}$	
Max Read	100 MB/s	$220 \mathrm{~MB/s}$	
Max Write	80 MB/s	130 MB/s	

D. Shin@SKKU

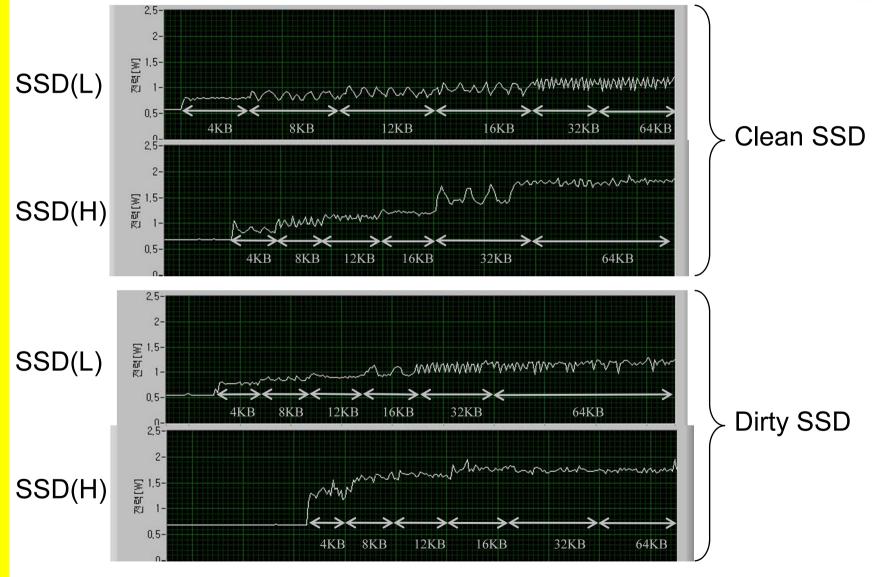
Target SSDs

- Dirty SSD
 - write files up to the amount of SSD capacity
 - delete all the files in file system level
 - each write operation will invoke garbage collection
- Clean SSD
 - All flash memory blocks are erased thus data can be written at the blocks without GC
 - HDDerase tool which executes the secure erase command in order to erase flash blocks.

Power Measurement



D. Shin@SKKU


Power Changes

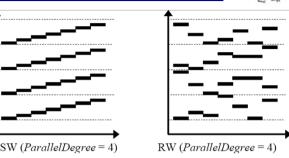
D. Shin@SKKU

Power Changes

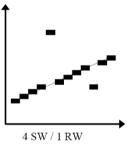
D. Shin@SKKU

Power Changes

- Power(MLC)>Power(SLC), En(SSD-H)<En(SSD-L)
- Idle state requires 0.6 watt
 - about 40% of the peak power consumption in the active state
 - about twice the power consumption of a typical application processor (≈0.3 watt)
 - about 60% of the standby power of netbook (≈ 1 watt)
 - it is necessary to shut down SSD when it is idle.
 - OCZ datasheet: 2W in operation, 0.5W in stand by
- SSDs have DRAM write buffers
 - But, precipitous increases at the moment the requests are sent to SSD
 - The data from host does not remain at the DRAM buffer during a long time
- D. Shin@SKKU

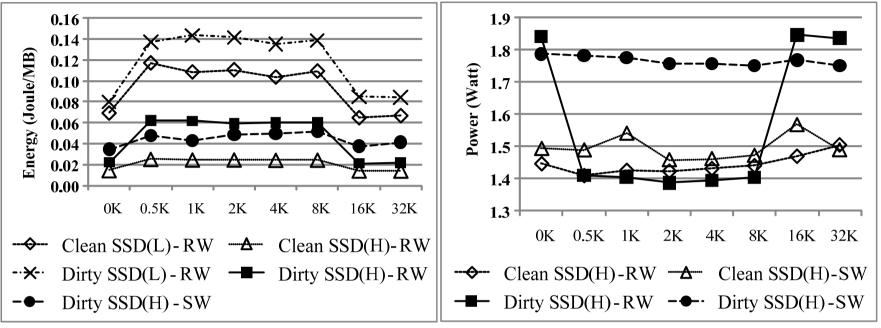

Micro-Benchmark

- Measure Joule/MB and watt of SSDs
- 4 benchmarks from uFlip
- Alignment benchmark
 - Effects of unaligned I/O requests
 - Shift the start address of the baseline requests that have the I/O size of 32 KB and are aligned by the I/O size
 - to know the address mapping unit of target SSD as well as the adverse effect of unaligned requests.
- Granularity benchmark
 - I/O requests with different I/O sizes from 1 KB to 4 MB.
 - to identify the number of parallel flash chips accessed simultaneously


Micro-Benchmark

- Parallelism benchmark
 - 32 KB-sized I/O requests from parallel processes each of

which accesses a different region of storage space

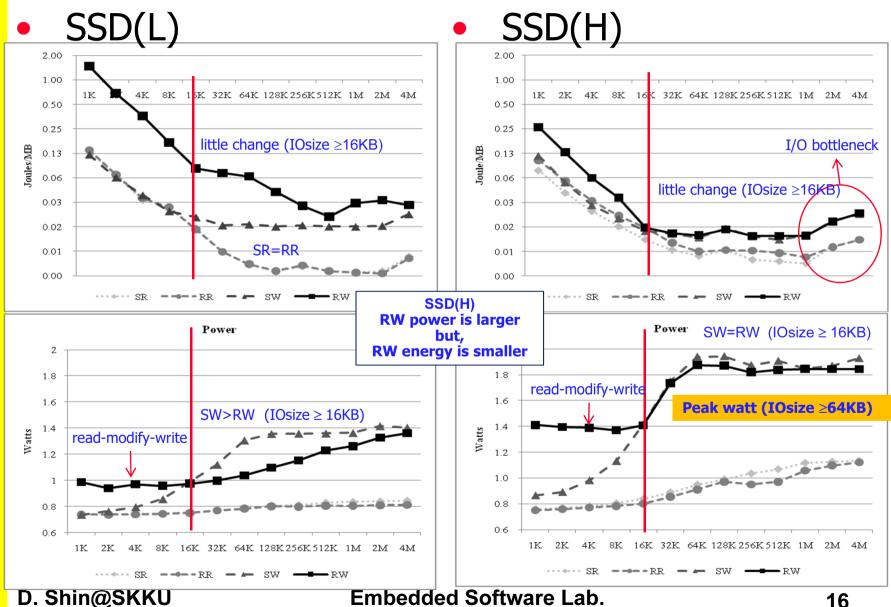

- Mixture benchmark
 - 4 KB-sized write requests by interposing RW requests between SW requests.
 - RW:SW = 1:64
 - -64 number of RW requests are interposed between each SW request (random access pattern)
 - RW:SW = 64:1
 - one RW request is interposed at every 64 number of SW requests (sequential access pattern)
- D. Shin@SKKU

Alignment (32KB)

(a) Energy consumption

(b) Power consumption

Observation

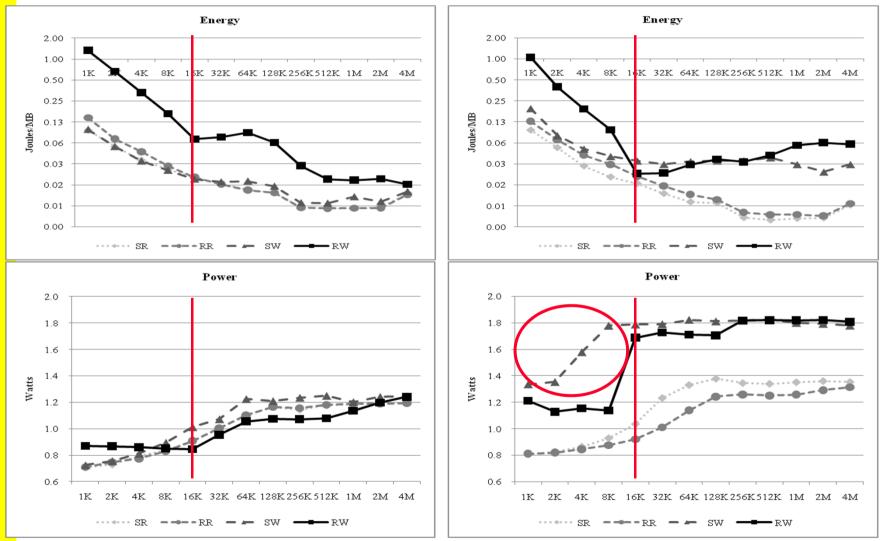

- RW patterns with the shift size between 0.5 KB and 8 KB need more energy
- If shift size is a multiple of 16 KB, similar to the aligned baseline pattern.
- SW requests show little changes
- D. Shin@SKKU

Alignment (32KB)

- SSD performs additional works if requests are not aligned by 16 KB unit.
 - If not aligned, SSD reads two 16 KB units, modifies a part of them and writes them.
 - Read-modify-write operation invokes the read operation that consumes a smaller power than the write operation, the average power consumption of unaligned RW requests is smaller than that of aligned requests
- Clean SSD has little changes
 - does not require the read operation.
- Examined SSDs use 16 KB address mapping unit
 - the whole 16 KB unit should be modified even when only a portion of the unit is modified.

Granularity (Clean SSD)

Granularity (Clean SSD)

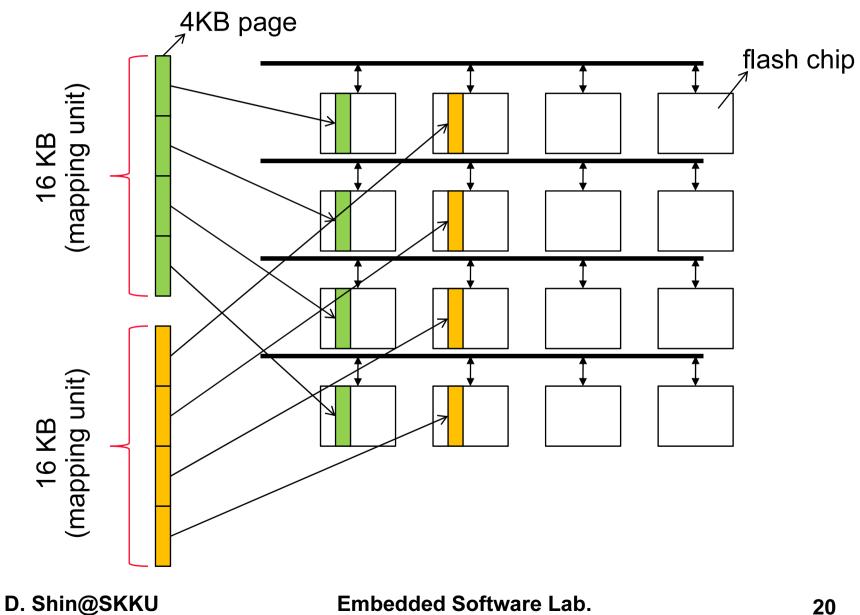


- Power(SSD-MLC) > Power(SSD-SLC) , Energy(SSD-H) < Energy(SSD-L)
 - SSD(L) : lower performance for the random write requests.
 - SSD(H) : intelligent FTL algorithm against RW requests
- The most outstanding change occurs when I/O size \geq 16 KB.
 - I/O size <16 KB: read-modify-write operation and therefore the energy consumption is significantly high but the power consumption has no change.
 - I/O size \geq 16 KB: the power of both RW and SW increase as the I/O size increases.
 - I/O size ≥ 64 KB: both SW and RW requests have little change on the power consumption in SSD(H).
- The largest I/O size which can be handled in parallel is 64 KB
 - # of parallel flash chips is 16 (= 64 KB / 4KB)
- Power(RW) < Power(SW) when I/O size \geq 16 KB in SSD(L)
 - cannot utilize the parallel chips efficiently for random requests.

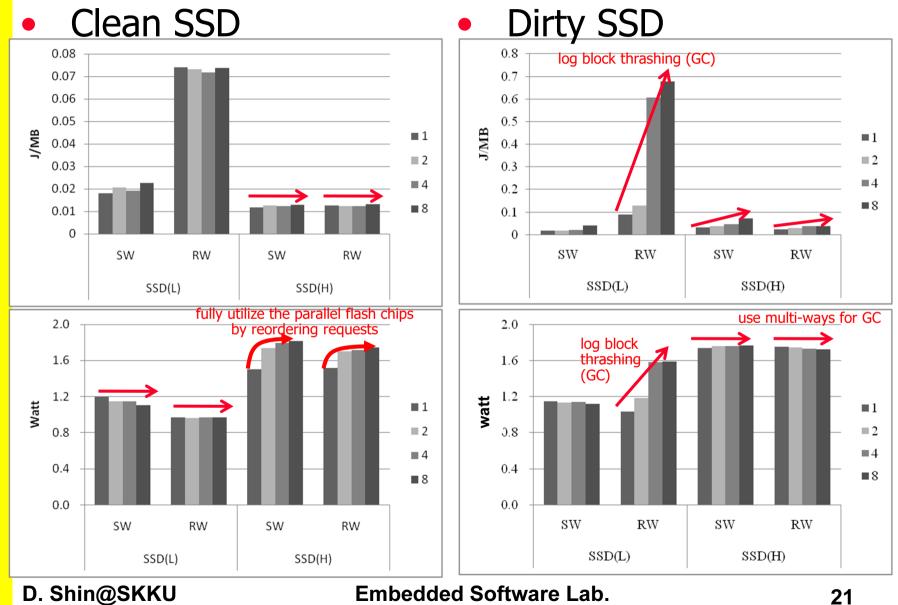
Granularity (Dirty SSD)

D. Shin@SKKU

SSD(L)

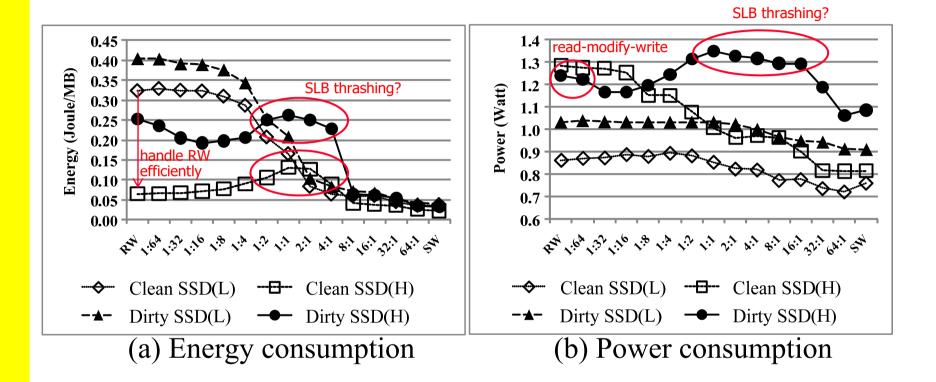

Granularity (Dirty SSD)

- SW requests consume higher energy/power at the dirty SSD(H).
- Energy/Power increases for read operations


Imagine SSD Internals

Parallelism (32KB)

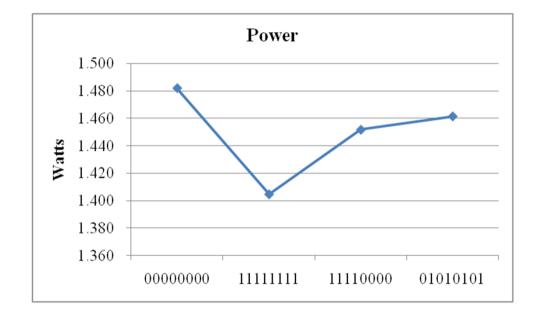
21


Parallelism

- Clean SSDs
 - no large changes on the energy consumption depending on the number of parallel I/O requests.
 - The power consumption of SSD(H) increases as the number of parallel requests increases.
 - more flash chips are accessed for the parallel requests.
 - Even for random requests, SSD(H) can fully utilize the parallel flash chips by reordering requests.
 - Power consumption of clean SSD(L) shows no change since it cannot utilize the parallel flash chips efficiently.
- Dirty SSDs
 - Energy consumptions increase as the parallelism increases.
 - garbage collections, long latency of erase

Mixed Pattern (4KB)

D. Shin@SKKU

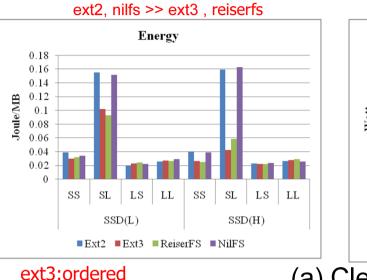

Mixed Pattern

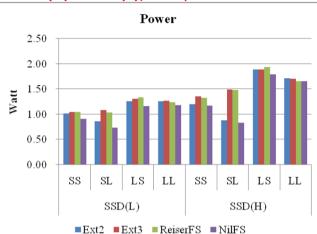
- SSD(L) and SSD(H) show completely different results.
- As the portion of SW increases, Energy of SSD(L) decreases.
- Energy of SSD(H) is highest when the portions of SW and RW are similar rather than when the access pattern is SW or RW dominant.
 - We presume that SSD(H) uses the sequential log block (SLB) where data are written by the in-place manner.
 - The SLB is used for efficient handling sequential write requests.
 - When random and sequential write requests are mixed, SLB cannot present its advantage since the interposed random requests obstruct the in-place write.
- SSD(H) can handle the random requests efficiently
 - Energy consumption gap between SSD(H) and SSD(L) is large for random-dominant request patterns.

Data Pattern

No significant difference depending on data pattern (max 5%)

Macro-Benchmark

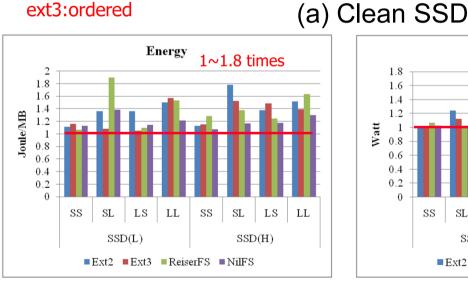


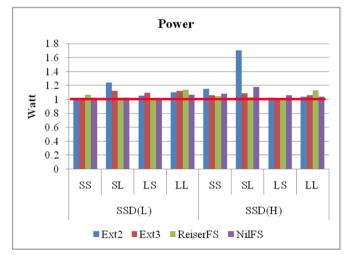

Postmark

smaller than mapping unit	Workload	File Size	Work Set	Transactions	Data (Read/Write)
	SS	9k ~ 15k	10,000	100,000	630M/755M
	SL	9k ~ 15k	100,000	100,000	600M/1.8G
	LS	100k ~ 3M	1,000	10,000	9.7G/12G
	Ш	100k ~ 3M	4,250	10,000	10G/20G

- Linux File Systems
 - Ext2
 - Ext3
 - ReiserFS
 - NilFS

Linux File System (Read&Write)





SSD(H) > SSD(L), low power at NILFS

low average power due to idle times

HUNAKWAN CI

(b) Relative values of dirty SSD

Conclusions

- Power consumption at idle state is not negligible
 - need an aggressive dynamic power management technique
- Power(MLC)>Power(SLC), but Energy is determined by performance
 - Smart FTL can reduce the energy consumption
- The address of write request should be aligned by the mapping unit
- The size of write request should be a multiple of the mapping unit
 - merge small writes
- Peak power is determined by the parallelism (maximum number of parallel flash chips)
 - can control the peak power
- Random writes on wide address range or multiple requests → log block thrashing
- Mixed pattern can deteriorate the energy efficiency.
- Little difference depending on data pattern

Conclusions

- Different file systems require different energy consumptions
 - Ext3 is best at clean SSD
 - NILFS (log-structured FS) is best at dirty SSD
 - Different idle times
- Dirty SSD requires a larger energy than clean SSD (about 40%)
- Little difference depending on I/O scheduler