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Introduction

• SSD requires low power/energy than does HDD.

• attractive to mobile systems and power-hungry 
data centers

• Recent SSDs use 

• Intensive parallel schemes � Peak Power

• Large amount of DRAM buffer

• Energy(SSD) ≈ Energy(HDD) ?

• many researches on power analysis and optimization 
for HDD.
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Introduction

• To optimize Energy(SSD), need to characterize the 
power/energy consumption of SSD.

• depending on the I/O request patterns 

• several hints on energy optimization. 

• enables to extract several architectural features of 
target SSD which vendors do not provide to users
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Related Works
• Seo: Empirical analysis on energy efficiency of flash-based SSDs. 

HotPower'08

• only simple access patterns, no detailed analysis

• Park: Power modeling of solid state disk for dynamic power 
management policy design in embedded systems. SEUS '09

• power consumption simulator for SSD. 

• consider parallel flash chip accesses

• too simple power model

• Lee: Advances in flash memory SSD technology for enterprise 
database applications. SIGMOD '09

• Single SSD can outperform several HDDs comprising RAID for 
both power consumption and I/O performance.

• Mohan: FlashPower: A detailed power model for NAND flash memory. 
DATE '10
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SSD Architecture
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Target SSDs

• The performance/power of SSD is determined by

• Cell type of flash memory

• DRAM buffer size 

• # of parallel flash chips

• Firmware

• SSD(H) provides higher I/O performances

• uses a larger internal buffer and a more intelligent 
FTL.
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Target SSDs

• Dirty SSD

• write files up to the amount of SSD capacity

• delete all the files in file system level

• each write operation will invoke garbage collection

• Clean SSD

• All flash memory blocks are erased thus data can 
be written at the blocks without GC

• HDDerase tool which executes the secure erase 
command in order to erase flash blocks. 
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Power Measurement
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Power Changes
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Power Changes
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Power Changes
• Power(MLC)>Power(SLC), En(SSD-H)<En(SSD-L) 

• Idle state requires 0.6 watt

• about 40% of the peak power consumption in the active 
state

• about twice the power consumption of a typical application 
processor (≈0.3 watt)

• about 60% of the standby power of netbook (≈ 1 watt)

• it is necessary to shut down SSD when it is idle. 

• OCZ datasheet: 2W in operation, 0.5W in stand by 

• SSDs have DRAM write buffers

• But, precipitous increases at the moment the requests are 
sent to SSD

• The data from host does not remain at the DRAM buffer 
during a long time
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Micro-Benchmark
• Measure Joule/MB and watt of SSDs

• 4 benchmarks from uFlip

• Alignment benchmark 

• Effects of unaligned I/O requests

• Shift the start address of the baseline requests that 
have the I/O size of 32 KB and are aligned by the I/O 
size

• to know the address mapping unit of target SSD as well 
as the adverse effect of unaligned requests. 

• Granularity benchmark 

• I/O requests with different I/O sizes from 1 KB to 4 MB. 

• to identify the number of parallel flash chips accessed 
simultaneously
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Micro-Benchmark

• Parallelism benchmark 

• 32 KB-sized I/O requests 

from parallel processes each of 

which accesses a different region of storage space

• Mixture benchmark 

• 4 KB-sized write requests by interposing 

RW requests between SW requests. 

• RW:SW = 1:64

–64 number of RW requests are interposed between 
each SW request (random access pattern)

• RW:SW = 64:1

–one RW request is interposed at every 64 number of 
SW requests (sequential access pattern)
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Alignment (32KB)

• Observation

• RW patterns with the shift size between 0.5 KB and 8 KB need 
more energy

• If shift size is a multiple of 16 KB, similar to the aligned 
baseline pattern. 

• SW requests show little changes



15Embedded Software Lab.D. Shin@SKKU

Alignment (32KB)
• SSD performs additional works if requests are not aligned by 

16 KB unit. 

• If not aligned, SSD reads two 16 KB units, modifies a 
part of them and writes them. 

• Read-modify-write operation invokes the read operation 
that consumes a smaller power than the write 
operation, the average power consumption of unaligned 
RW requests is smaller than that of aligned requests

• Clean SSD has little changes 

• does not require the read operation. 

• Examined SSDs use 16 KB address mapping unit

• the whole 16 KB unit should be modified even when 
only a portion of the unit is modified.
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Granularity (Clean SSD)

• SSD(L) • SSD(H)

little change (IOsize ≥16KB)

SW=RW  (IOsize ≥ 16KB)

SW>RW  (IOsize ≥ 16KB)

SR=RR

read-modify-write

read-modify-write

I/O bottleneck

SSD(H)
RW power is larger 

but,
RW energy is smaller

Peak watt (IOsize ≥64KB)

little change (IOsize ≥16KB)
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Granularity (Clean SSD)
• Power(SSD-MLC) > Power(SSD-SLC) , Energy(SSD-H) < Energy(SSD-L)  

• SSD(L) : lower performance for the random write requests.

• SSD(H) : intelligent FTL algorithm against RW requests

• The most outstanding change occurs when I/O size ≥ 16 KB. 

• I/O size <16 KB: read-modify-write operation and therefore the 
energy consumption is significantly high but the power consumption 
has no change. 

• I/O size ≥ 16 KB: the power of both RW and SW increase as the I/O 
size increases. 

• I/O size ≥ 64 KB: both SW and RW requests have little change on 
the power consumption in SSD(H). 

• The largest I/O size which can be handled in parallel is 64 KB

• # of parallel flash chips is 16 (= 64 KB / 4KB)  

• Power(RW) < Power(SW) when I/O size ≥ 16 KB in SSD(L) 

• cannot utilize the parallel chips efficiently for random requests.
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Granularity (Dirty SSD)
• SSD(L) • SSD(H)
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Granularity (Dirty SSD)
• SW requests consume higher energy/power at the dirty SSD(H). 

• Energy/Power increases for read operations
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Imagine SSD Internals
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Parallelism (32KB)

• Clean SSD • Dirty SSD

fully utilize the parallel flash chips 
by reordering requests

log block thrashing (GC)

log block 
thrashing 
(GC)

use multi-ways for GC
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Parallelism
• Clean SSDs

• no large changes on the energy consumption depending on 
the number of parallel I/O requests. 

• The power consumption of SSD(H) increases as the number 
of parallel requests increases. 

– more flash chips are accessed for the parallel requests. 

– Even for random requests, SSD(H) can fully utilize the 
parallel flash chips by reordering requests. 

• Power consumption of clean SSD(L) shows no change since it 
cannot utilize the parallel flash chips efficiently. 

• Dirty SSDs 

• Energy consumptions increase as the parallelism increases. 

• garbage collections, long latency of erase
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Mixed Pattern (4KB)

handle RW 
efficiently

read-modify-write

SLB thrashing?

SLB thrashing?
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Mixed Pattern
• SSD(L) and SSD(H) show completely different results. 

• As the portion of SW increases, Energy of SSD(L) decreases. 

• Energy of SSD(H) is highest when the portions of SW and RW are 
similar rather than when the access pattern is SW or RW 
dominant. 

• We presume that SSD(H) uses the sequential log block (SLB) 
where data are written by the in-place manner. 

• The SLB is used for efficient handling sequential write 
requests. 

• When random and sequential write requests are mixed, SLB 
cannot present its advantage since the interposed random 
requests obstruct the in-place write. 

• SSD(H) can handle the random requests efficiently 

• Energy consumption gap between SSD(H) and SSD(L) is large 
for random-dominant request patterns.
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Data Pattern

No significant difference depending on data pattern (max 5%)
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Macro-Benchmark

Workload File Size Work Set Transactions
Data

(Read/Write)

SS 9k ~ 15k 10,000 100,000 630M/755M

SL 9k ~ 15k 100,000 100,000 600M/1.8G

LS 100k ~ 3M 1,000 10,000 9.7G/12G

LL 100k ~ 3M 4,250 10,000 10G/20G

smaller than 
mapping unit

Postmark

• Linux File Systems

• Ext2

• Ext3

• ReiserFS

• NilFS
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Linux File System (Read&Write)

(a) Clean SSD

(b) Relative values of dirty SSD

ext3:ordered

SSD(H) > SSD(L),  low power at NILFSext2, nilfs >> ext3 , reiserfs

low average power 
due to idle times 

1~1.8 times
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Conclusions
• Power consumption at idle state is not negligible

• need an aggressive dynamic power management technique

• Power(MLC)>Power(SLC), but Energy is determined by performance

• Smart FTL can reduce the energy consumption

• The address of write request should be aligned by the mapping unit

• The size of write request should be a multiple of the mapping unit

• merge small writes 

• Peak power is determined by the parallelism (maximum number of 
parallel flash chips)

• can control the peak power

• Random writes on wide address range or multiple requests � log 
block thrashing

• Mixed pattern can deteriorate the energy efficiency. 

• Little difference depending on data pattern
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Conclusions
• Different file systems require different energy consumptions

• Ext3 is best at clean SSD

• NILFS (log-structured FS) is best at dirty SSD

• Different idle times

• Dirty SSD requires a larger energy than clean SSD (about 40%)

• Little difference depending on I/O scheduler


