Architecture Exploration of High-Performance PCs with a Solid-State Disk

D. Kim, K. Bang, E.-Y. Chung School of EE, Yonsei University

S. Yoon School of EE, Korea University

April 21, 2010 1/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 2/53

SSD - The Inevitable Tide

HDD

Mass storage device for the last several decades

SSD

- An electronic storage device
- Using non-volatile memory elements
- High-performance
- Small form factor
- Light weight
- Low power consumption
- Shock resistance
- Advantageous for harsh and rugged environment

April 21, 2010 3/53

From Extravagance to Necessity

- The only downside of SSD
 - The higher bit cost than HDD
 - Samsung's 256GB SSD is as much as 860,000 won
 - Seagate's 250GB HDD is just 44,000 won
- The increasing density of NAND flash memory
 - It becomes double every 12 months
 - The price gap keeps narrowing and narrowing...
 - Eventually, it will become negligible in 2012
 - Forecast by IDC (International Data Corporation)

April 21, 2010 4/53

The Increasing Density of NAND

- Multi Level Cell
 - SLC → DLC → TLC → QLC
- 3D Stacking

Source: Toshiba 2008

April 21, 2010 5/53

Average Selling Price Comparison

→ 120GB HDD

---- 128GB Flash SSD

Source: IDC 2008

April 21, 2010

CPU / Memory Performance Gap

Memory Bottleneck

Source: SUN Microsystems 2007

Source: MSDN 2009

- Multi / many-core processors enlarge the gap
 - Intel dual core / quad core ...
 - Nvidia CUDA ...
 - ARM Cortex ...
- High-performance SSD is Strongly Required!

April 21, 2010 7/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 8/53

SSD Internals -

SSD Internals - Memory Hierarchy

- Smart buffer cache [Lee et al. 05]
 - Enhanced exploitation of spatial / temporal locality
 - High performance and low power consumption
- Energy-aware demand paging [Park et al. 04]
 - Minimizes the number of write or erase operations

April 21, 2010 10/53

SSD Internals - Hybrid Systems

- SLC / MLC hybrid SSD [Chang et al. 08]
 - Trade-off performance and cost
 - SLC as a cache block
- FRAM / NAND hybrid SSD [Yoon et al. 07]
 - Meta-data is maintained in a small FRAM
 - Exploiting non-volatility of FRAM
- PRAM / NAND hybrid SSD [Kim et al. 08]
 - PRAM is used for meta-data
 - Firstly under mass production among universal RAMs

April 21, 2010 11/53

Interaction between Host and SSD

- Robson Architecture by Intel
 - A non-volatile memory layer as a cache for disk
 - Reduces data transfer time and power consumption
- PCIe SSD by FusionIO
 - Resolves bottleneck due to traditional slow I/F
 - Much higher bandwidth (520MB/s)
- NAND-based storage nodes [Lee et al. 08]
 - Several thousands of nodes to build clusters
 - Plugged into ethernet-style backplane

April 21, 2010 12/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 13/53

Traditional Architecture of SSD

April 21, 2010 14/53

SSD Benchmark Chart

Drive	Read	Write
Intel X-25E	250MB/s	170MB/s
Kingston E	250MB/s	170MB/s
Intel X-25M	250MB/s	70MB/s
Kingston M	250MB/s	70MB/s
OCZ Apex	230MB/s	160MB/s
G.Skill Titan	230MB/s	160MB/s
OCZ Vertex	200MB/s	160MB/s
Patriot Warp V2	175MB/s	100MB/s
OCZ Core V2	170MB/s	100MB/s
G.Skill FM	155MB/s	90MB/s
OCZ Solid	155MB/s	90MB/s
RiData CO4MPN	152MB/s	96MB/s
SuperTalent Masterdrive OX	150MB/s	100MB/s
Transcend TS	145MB/s	92MB/s
RiData CO3M	118MB/s	74MB/s
OCZ SSD	100MB/s	80MB/s
G.Skill FS	100MB/s	80MB/s
Samsung SSD	100MB/s	80MB/s

Source: www.ssdbenchmark.com 2009

April 21, 2010 15/53

Asynchronous DDR NAND Flash

- The most crucial bottleneck of SSD is the performance of NAND flash device
- New DDR type NAND flash devices offer tremendous performance improvements
- Toggle-mode NAND from Samsung & Denali
- ONFi from Hynix, Intel, Micron, etc.

April 21, 2010 16/53

The 3rd Generation High-speed I/F

- SSDs are close to saturating the SATA 2.0
 - 3 Gbit/s (300 MB/s) limit
- SATA 3 / USB 3 / PCIe 3
 - SATA 3.0 will offer 6 Gbit/s (600MB/s)
 - USB 3.0 SuperSpeed will provides 4.8 Gbit/s (572MB/s)
 - PCIe 3.0 will add a Gen3-signalling mode, at 1 GB/s
- DDR 3

DDR3-1600 shows 12.5GB/s by 64-bit data width

April 21, 2010 17/53

Conventional PC Architecture

April 21, 2010 18/53

DMA in Conventional PC

DMA write (consecutive)

DMA read (pipelined)

April 21, 2010 19/53

Limitations of Conventional PC / SSD

- Simply replaces a HDD
 - The same interface protocol for compatibility
 - Maximum bandwidth of ATA is only 133 ~ 300 MB/s
 - May become a bottleneck in the near future
- Data go through both North & South bridges
 - A single data request must be arbitrated twice
 - Both bridges are not designated for SSD
 - SSD is connected together with slow peripherals
- Page fault transfer must be serialized
 - DMA read for a new page must wait until completion of DMA write for a victim page

April 21, 2010 20/53

Architecture Exploration Aspects

- Host interface scheme
 - Location of SSD in PC
 - From the conventional south bridge to north bridge
 - Interface Protocol
 - Using huge bandwidth of DDR offered by north bridge
 - DDR 2 is widely used in PC at the time
- Data transfer concurrency
 - Minimize the conflicts between CPU-to-Mem and Mem-to-SSD
 - A dual port DRAM and a dual port SSD

April 21, 2010 21/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 22/53

SSD with DDR DRAM Interface

- The fastest DDR DRAM interface
 - 64-bit bus width is widely used
 - Using both rising and falling edge for data transfer
 - High frequency for communication with processors operating with several GHz
- Fixed access latency
 - Latencies such as Column Address Strobe are fixed
 - SSD cannot guarantee internal maximum latency
 - Cache buffer hit vs. cache buffer miss
 - Needs a signal for data readiness
 - DQS pin is used to support arbitrary latencies

April 21, 2010 23/53

Timing Diagram of DDR I/F SSD

April 21, 2010 24/53

Dual Port SSD Internals

April 21, 2010 25/53

DMA Command Pack for Dual DMA

April 21, 2010 26/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 27/53

4 Architectural Choices

Direct	Location of the SSD		
Path	South Bridge	North Bridge	
No	SBSP Architecture Conventional Architecture	NBSP Architecture 1. DMA in DRAM controller in NB 2. DQS scheme supported DRAM controller in NB	
Yes	 SBDP Architecture 1. Dual-port DRAM supported DRAM controller in NB 2. DMA command packing supported OS 	 NBDP Architecture DMA in DRAM controller in NB DQS scheme supported DRAM controller in NB Dual-port DRAM supported DRAM controller in NB DMA command packing supported OS 	

April 21, 2010 28/53

Conventional SBSP Architecture

April 21, 2010 29/53

NBSP Architecture

April 21, 2010 30/53

SBDP Architecture

April 21, 2010 31/53

NBDP Architecture

April 21, 2010 32/53

DMA in Conventional SSD (Revisit)

DMA write (consecutive)

DMA read (pipelined)

April 21, 2010 33/53

DMA in Dual Port SSD

April 21, 2010 34/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 35/53

Experimental Setup

- Modeling transaction-level PC architecture
 - Using high-level SystemC language
 - Cycle accurate modeling, especially SATA, DDR, and PCIe protocols
- The main specification
 - Based on Intel's 965 chipset for North Bridge and ICH8 for South Bridge
 - Bridge internals and externals are linked by PCIe
 - DDR2-800 (6.4GB/s) is selected for NB
 - All other peripherals are not considered except CPU, NB, SB, DRAM, and SSD

E.g. Graphics, Sound, Mouse, Keyboard, etc.

April 21, 2010 36/53

DMA Read with Cache Miss

Total Time

Excluding SSD internal

April 21, 2010 37/53

Contribution Breakdown in \$ Miss

	SB elimination	DRAM I/F	Direct path	
NBSP	1.89%	98.11%	-	
NBDP	2.52%	11.85%	85.85%	

- Improvement by SB elimination is marginal
 - The reduction of transfer time is hidden by long SSD internal latency
- DRAM interface is dominant for NBSP
- Direct path is dominant for NBDP

April 21, 2010 38/53

DMA Read with Cache Hit

Total Time

Excluding SSD internal

April 21, 2010 39/53

Contribution Breakdown in \$ Hit

	SB elimination	DRAM I/F	Direct path
NBSP	27.48%	72.52%	-
NBDP	30.04%	34.79%	35.16%

- Contribution of SB elimination is not marginal
 - No hidden effect by SSD internal latency
- DRAM interface is still stronger for NBSP
- Overall even contribution for NBDP

April 21, 2010 40/53

DMA Write

Total Time

Excluding SSD internal

April 21, 2010 41/53

Contribution Breakdown in Write

	SB elimination	DRAM I/F	Direct path	
NBSP	37.92%	62.08%	-	
NBDP	23.00%	7.03%	69.97%	

- DRAM interface is stronger for NBSP
 - Similar to DMA read cache hit
- Direct path is dominant for NBDP
 - Similar to DMA read cache miss

April 21, 2010 42/53

Page Fault Scenario

Total Time

Excluding SSD internal

April 21, 2010 43/53

Contribution Breakdown in P.F.

	SB elimination	DRAM I/F	Direct path	
NBSP	42.23%	57.77%	-	
NBDP	21.31%	10.60%	68.09%	

- Similar to DMA write for both NBSP and NBDP
- Victim page write is dominant and new page read is marginal for page fault

April 21, 2010 44/53

Network Download Scenario

Total Time

Excluding SSD internal

April 21, 2010 45/53

Contribution Breakdown in N.D.

	SB elimination	DRAM I/F	Direct path	
NBSP	38.52%	61.48%	_	
NBDP	_	_	100%	

- DRAM interface is stronger for NBSP
 - Similar to DMA read cache hit or DMA write
- The communication between main memory and SSD occurs solely via the direct path

April 21, 2010 46/53

Real Traces - About 20% Hit Ratio

April 21, 2010 47/53

Max. Performance Improve Ratio

Sub-Op.	SBSP	NBSP	SBDP	NBDP
DMA Read miss	1	1.31	1.60	2.29
DMA Read hit	1	8.70	2.13	28.56
DMA Write	1	1.59	1.83	2.75
Page Fault	1	1.37	1.74	2.37
Network Download	1	1.31	2.08	2.19
Real Trace 1	1	1.50	1.74	2.60
Real Trace 2	1	1.54	1.79	2.67
Real Trace 3	1	1.38	1.65	2.40
Real Trace 4	1	1.50	1.75	2.60

- Cache hit ratio is the most important
 - Ideally, all the data are read from high-speed DRAM
- Cache buffer should be carefully designed!

April 21, 2010 48/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 49/53

Conclusion and Future Work

- How to make an extreme-performance SSD
 - SSD should be located quite close to main memory
 - The number of path(or bandwidth) is as important as high-speed interface
 - Make 100% cache hit by all means
- We DREAM a solution to satisfy the conditions
- A single general memory device having DRAM and NAND at the same memory hierarchy
 - Replace traditional main memory and disks
 - Not only high-performance SSD internal arch.
 - But also paradigm shift on PC architecture and OS

April 21, 2010 50/53

Outline

- Introduction
- Related Works
- Motivation
- The Proposed Techniques
- PC Architecture Exploration
- Experimental Results
- Conclusion and Future Work
- Summary

April 21, 2010 51/53

Summary

- SSD is the solution to overcome CPU/IO gap
- Technical directions to next generation SSD
 - SSD internal architecture
 - SSD interface scheme
 - NAND flash interface scheme
 - System-level architecture exploration
- Architectural improvement will be driven by IO device in this Exa-byte era

April 21, 2010 52/53

Thank you!

Q & A

April 21, 2010 53/53