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SSD – The Inevitable Tide

 HDD
 Mass storage device for the last several decades

 SSD
 An electronic storage device
 Using non-volatile memory elements
 High-performance
 Small form factor
 Light weight
 Low power consumption
 Shock resistance
 Advantageous for harsh and rugged environment
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From Extravagance to Necessity 

 The only downside of SSD
 The higher bit cost than HDD
 Samsung’s 256GB SSD is as much as 860,000 won
 Seagate’s 250GB HDD is just 44,000 won

 The increasing density of NAND flash memory
 It becomes double every 12 months
 The price gap keeps narrowing and narrowing…
 Eventually, it will become negligible in 2012

• Forecast by IDC (International Data Corporation)
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The Increasing Density of NAND

 Multi Level Cell
 SLC → DLC → TLC → QLC …

 3D Stacking
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Source: Toshiba 2008



Average Selling Price Comparison
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Source : IDC 2008



CPU / Memory Performance Gap

 Multi / many-core processors enlarge the gap
 Intel dual core / quad core …
 Nvidia CUDA …
 ARM Cortex …

 High-performance SSD is Strongly Required!
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SSD Internals – Memory Hierarchy

 Smart buffer cache [Lee et al. 05]
 Enhanced exploitation of spatial / temporal locality
 High performance and low power consumption

 Energy-aware demand paging [Park et al. 04]
 Minimizes the number of write or erase operations
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SSD Internals – Hybrid Systems

 SLC / MLC hybrid SSD [Chang et al. 08]
 Trade-off performance and cost
 SLC as a cache block

 FRAM / NAND hybrid SSD [Yoon et al. 07]
 Meta-data is maintained in a small FRAM
 Exploiting non-volatility of FRAM

 PRAM / NAND hybrid SSD [Kim et al. 08]
 PRAM is used for meta-data
 Firstly under mass production among universal 

RAMs 
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Interaction between Host and SSD

 Robson Architecture by Intel
 A non-volatile memory layer as a cache for disk
 Reduces data transfer time and power consumption

 PCIe SSD by FusionIO
 Resolves bottleneck due to traditional slow I/F 
 Much higher bandwidth (520MB/s)

 NAND-based storage nodes [Lee et al. 08]
 Several thousands of nodes to build clusters
 Plugged into ethernet-style backplane
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Traditional Architecture of SSD
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SSD Benchmark Chart
Drive Read Write

Intel X-25E 250MB/s 170MB/s

Kingston E 250MB/s 170MB/s

Intel X-25M 250MB/s 70MB/s

Kingston M 250MB/s 70MB/s

OCZ Apex 230MB/s 160MB/s

G.Skill Titan 230MB/s 160MB/s

OCZ Vertex 200MB/s 160MB/s

Patriot Warp V2 175MB/s 100MB/s

OCZ Core V2 170MB/s 100MB/s

G.Skill FM 155MB/s 90MB/s

OCZ Solid 155MB/s 90MB/s

RiData CO4MPN 152MB/s 96MB/s

SuperTalent Masterdrive OX 150MB/s 100MB/s

Transcend TS 145MB/s 92MB/s

RiData CO3M 118MB/s 74MB/s

OCZ SSD 100MB/s 80MB/s

G.Skill FS 100MB/s 80MB/s

Samsung SSD 100MB/s 80MB/s
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Asynchronous DDR NAND Flash

 The most crucial bottleneck of SSD is the 
performance of NAND flash device

 New DDR type NAND flash devices offer 
tremendous performance improvements

 Toggle-mode NAND from Samsung & Denali
 ONFi from Hynix, Intel, Micron, etc.

April 21, 2010 16/53



The 3rd Generation High-speed I/F

 SSDs are close to saturating the SATA 2.0
 3 Gbit/s (300 MB/s) limit

 SATA 3 / USB 3 / PCIe 3
 SATA 3.0 will offer 6 Gbit/s (600MB/s)
 USB 3.0 SuperSpeed will provides 4.8 Gbit/s 

(572MB/s)
 PCIe 3.0 will add a Gen3-signalling mode, at 1 GB/s

 DDR 3
 DDR3-1600 shows 12.5GB/s by 64-bit data width
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Conventional PC Architecture
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DMA in Conventional PC
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DMA read (pipelined)DMA write (consecutive)



Limitations of Conventional PC / SSD

 Simply replaces a HDD
 The same interface protocol for compatibility
 Maximum bandwidth of ATA is only 133 ~ 300 MB/s
 May become a bottleneck in the near future

 Data go through both North & South bridges
 A single data request must be arbitrated twice
 Both bridges are not designated for SSD
 SSD is connected together with slow peripherals

 Page fault transfer must be serialized
 DMA read for a new page must wait until completion 

of DMA write for a victim page
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Architecture Exploration Aspects

 Host interface scheme
 Location of SSD in PC

• From the conventional south bridge to north bridge
 Interface Protocol

• Using huge bandwidth of DDR offered by north bridge
• DDR 2 is widely used in PC at the time

 Data transfer concurrency
 Minimize the conflicts between CPU-to-Mem and 

Mem-to-SSD
 A dual port DRAM and a dual port SSD
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SSD with DDR DRAM Interface

 The fastest DDR DRAM interface
 64-bit bus width is widely used
 Using both rising and falling edge for data transfer
 High frequency for communication with processors 

operating with several GHz

 Fixed access latency
 Latencies such as Column Address Strobe are fixed
 SSD cannot guarantee internal maximum latency

• Cache buffer hit vs. cache buffer miss
 Needs a signal for data readiness
 DQS pin is used to support arbitrary latencies

April 21, 2010 23/53



Timing Diagram of DDR I/F SSD 
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Cache buffer hit

Cache buffer miss



Dual Port SSD Internals
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DMA Command Pack for Dual DMA
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4 Architectural Choices
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Direct 
Path

Location of the SSD
South Bridge North Bridge

No

SBSP Architecture
Conventional
Architecture

NBSP Architecture
1. DMA in DRAM controller in NB
2. DQS scheme supported DRAM 

controller in NB

Yes

SBDP Architecture
1. Dual-port DRAM 

supported DRAM 
controller in NB

2. DMA command 
packing supported OS

NBDP Architecture
1. DMA in DRAM controller in NB
2. DQS scheme supported DRAM 

controller in NB
3. Dual-port DRAM supported 

DRAM controller in NB
4. DMA command packing 

supported OS



Conventional SBSP Architecture
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NBSP Architecture
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SBDP Architecture
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NBDP Architecture
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DMA in Conventional SSD (Revisit)
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DMA read (pipelined)DMA write (consecutive)



DMA in Dual Port SSD
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Experimental Setup

 Modeling transaction-level PC architecture
 Using high-level SystemC language
 Cycle accurate modeling, especially SATA, DDR, and 

PCIe protocols
 The main specification

 Based on Intel’s 965 chipset for North Bridge and 
ICH8 for South Bridge

 Bridge internals and externals are linked by PCIe
 DDR2-800 (6.4GB/s) is selected for NB
 All other peripherals are not considered except 

CPU, NB, SB, DRAM, and SSD
• E.g. Graphics, Sound, Mouse, Keyboard, etc.
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DMA Read with Cache Miss
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Excluding SSD internalTotal Time



Contribution Breakdown in $ Miss

 Improvement by SB elimination is marginal
 The reduction of transfer time is hidden by long SSD 

internal latency
 DRAM interface is dominant for NBSP
 Direct path is dominant for NBDP

April 21, 2010 38/53

SB elimination DRAM I/F Direct path
NBSP 1.89% 98.11% –
NBDP 2.52% 11.85% 85.85%



DMA Read with Cache Hit
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Excluding SSD internalTotal Time



Contribution Breakdown in $ Hit

 Contribution of SB elimination is not marginal
 No hidden effect by SSD internal latency

 DRAM interface is still stronger for NBSP
 Overall even contribution for NBDP
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SB elimination DRAM I/F Direct path
NBSP 27.48% 72.52% –
NBDP 30.04% 34.79% 35.16%



DMA Write
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Excluding SSD internalTotal Time



Contribution Breakdown in Write

 DRAM interface is stronger for NBSP
 Similar to DMA read cache hit

 Direct path is dominant for NBDP
 Similar to DMA read cache miss

April 21, 2010 42/53

SB elimination DRAM I/F Direct path
NBSP 37.92% 62.08% –
NBDP 23.00% 7.03% 69.97%



Page Fault Scenario
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Excluding SSD internalTotal Time



Contribution Breakdown in P.F.

 Similar to DMA write for both NBSP and NBDP
 Victim page write is dominant and new page 

read is marginal for page fault
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SB elimination DRAM I/F Direct path
NBSP 42.23% 57.77% –
NBDP 21.31% 10.60% 68.09%



Network Download Scenario
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Excluding SSD internalTotal Time



Contribution Breakdown in N.D.

 DRAM interface is stronger for NBSP
 Similar to DMA read cache hit or DMA write

 The communication between main memory 
and SSD occurs solely via the direct path
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SB elimination DRAM I/F Direct path
NBSP 38.52% 61.48% –
NBDP – – 100%



Real Traces – About 20% Hit Ratio 
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Max. Performance Improve Ratio

April 21, 2010 48/53

Sub-Op. SBSP NBSP SBDP NBDP
DMA Read miss 1 1.31 1.60 2.29
DMA Read hit 1 8.70 2.13 28.56

DMA Write 1 1.59 1.83 2.75
Page Fault 1 1.37 1.74 2.37

Network Download 1 1.31 2.08 2.19
Real Trace 1 1 1.50 1.74 2.60
Real Trace 2 1 1.54 1.79 2.67
Real Trace 3 1 1.38 1.65 2.40
Real Trace 4 1 1.50 1.75 2.60

 Cache hit ratio is the most important
 Ideally, all the data are read from high-speed DRAM 

 Cache buffer should be carefully designed!



Outline

 Introduction
 Related Works
 Motivation
 The Proposed Techniques
 PC Architecture Exploration
 Experimental Results
 Conclusion and Future Work
 Summary

April 21, 2010 49/53



Conclusion and Future Work

 How to make an extreme-performance SSD
 SSD should be located quite close to main memory
 The number of path(or bandwidth) is as important 

as high-speed interface
 Make 100% cache hit by all means

 We DREAM a solution to satisfy the conditions
 A single general memory device having DRAM 

and NAND at the same memory hierarchy
 Replace traditional main memory and disks
 Not only high-performance SSD internal arch.
 But also paradigm shift on PC architecture and OS
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Summary

 SSD is the solution to overcome CPU/IO gap
 Technical directions to next generation SSD

 SSD internal architecture
 SSD interface scheme
 NAND flash interface scheme
 System-level architecture exploration

 Architectural improvement will be driven by 
IO device in this Exa-byte era
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Thank you!

Q & A
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