TrueErase: Full-storage-data-path
Per-file Secure Deletion

Sarah Diesburg - Christopher Meyers « Mark Stanovich
Michael Mitchell + Justin Marshall - Julia Gould

An-1 Andy Wang
Florida State University

Geoff Kuenning
Harvey Mudd College

Overview

Problem

o Per-file secure-deletion is difficult to achieve
Important for expired data, statute of limitations, etc.

Existing solutions tend to be

o Limited to a segment of legacy storage data path
o File-system- or storage-medium-specific
TrueErase

o Storage-data-path-wide solution

o Works with common file systems & storage media

‘ The Problem

= Most users believe that files are deleted once

o Files are no longer visible
o The trash can is emptied
o The partition is formatted

= In reality
o Actual data remains

OTTAWA A CITIZEN *EES5a | coMPUTERWORLD

REGIONAL REWSPAFER FUBLISHER
Divizion of Carwest Publishing Ine. stﬂmﬂﬁ

IT Careers
Opinion Business Sporis Entertainment Life Health Technolom

es bought on eBay hold
'Sensitive' data found on returned hard drive

Retired Carleton professor says Staples should have deleted files fhorate
before reselling it

BY SARAH SCHMIDT, CAHWEST HEWS SERVICE

Tvitter ShareThiz

Home Business Hardware Software

Man finds U.S. military secrets on secq
by Rich Bowden -Jan 27 2009, 04:43

Posted by admin in Sci-Tech

Mobile phones can never be totally wiped clean of data
7
2008

B 1 Comment

GlZMOD Q) e omer - consenes - IR ot

iPHOHE aprs © _ _ _ _

Refurbished iPhones Might Still Have Previous Owners'
Personal Data, No Way to Erase It

By matk buchanan, 11:20 AM on Tue May 20 2008, 21,636 views

‘ What is secure deletion?

= Rendering a file’s deleted content and
metadata (e.g., hame) irrecoverable

m /dir/file

dir
I-node

file
I-node

S
data

110000.. [
bitmap

‘ What is secure deletion?

= Rendering a file’s deleted content and
metadata (e.g., hame) irrecoverable

= rm /dir/file

dir
o fE

file
I-node

T 2/location
bitmap

How hard can this be?

Diverse threat models

o Attacks on backups, live systems, cold boot
attacks, covert channels, policy violations, etc.

Our focus

o Dead forensic attacks on local storage
Occur after the computer has been shut down properly

Basic Research Question

Under the most benign environments

What can we design and build to ensure that
the secure deletion of a file Is honored?

o Throughout the legacy storage data path

TrueErase: A Storage-data-path-

wide Framework
Irrevocably deletes data and metadata

Offers a unigue combination of properties

o Compatible with legacy apps, file systems, and
storage media

Per-file deletion granularity

Solution covers the entire data path
Can survive common system failures
Core logic systemically verified

o O 0O DO

‘ Legacy Storage Data Path

m Limited control over

. applications / metadata

/- Not aware of storage
L‘, file system medium; limited
| control over storage
storage

- management\ locations

| = NO access to a
; storage block’s t)_’pe_, file
ownership, in-use
status

10

‘ Legacy Storage Data Path

m Limited control over

. applications / metadata

/- Not aware of storage
” file system medium: limited
| control over storage
storage

- management\ locations

| m NO access to a
‘L storage block’s type, file
ownership, in-use
status

11

‘ Legacy Storage Data Path

= Limited control over

. applications / metadata

/- Not aware of storage
n file system medium; limited
| control over storage
storage

- management\ locations

| m NO access to a
; storage block’s t)_’pe_, file
ownership, in-use
status

12

‘ Existing Secure-deletion Solutions

B
. applications/

B
n file system /

storage
- management —m

l
- storage O

May leak metadata
iInformation

Cannot ensure In-
place updates
o Encryption will not help

Hard to provide per-
file solutions

Cross-layer solutions
tend to be file-system-

and medium-specific

13

‘ Existing Secure-deletion Solutions

May leak metadata

n
. applications/ Information
/- Cannot ensure in-
n file system place updates
o Encryption will not help
storage _
- management ——m Hard (0 provide per-

| file solutions
- A storage = Cross-layer solutions
tend to be file-system-

and medium-specific

14

‘ Existing Secure-deletion Solutions

B
. applications/

B
n file system /

storage
- management —m

l
- storage O

May leak metadata
Information

Cannot ensure In-
place updates
o Encryption will not help

Hard to provide per-
file solutions

Cross-layer solutions
tend to be file-system-

and medium-specific

15

‘ Existing Secure-deletion Solutions

May leak metadata

=
. applications / Information

m Cannot ensure In-
L" file system/ place updates

o Encryption will not help
storage _
- management ——m Hard (0 provide per-

| file solutions
- ‘L storage = Cross-layer solutions
tend to be file-system-

and_mﬂdmm_spgmﬂc_

Other Secure-deletion Challenges

. applications

M fije system
storage
- management
“-
storage
I -~ J

No legacy requests to
delete data blocks

o For performance
Legacy optimizations

o Requests can be split,
reordered, cancelled,
consolidated, buffered,
with versions in transit

Lack of global IDs
Crashes/verification

17

‘ TrueErase Overview

= A centralized, per-file
secure-deletion
framework

. applications

user model"

i file system
TAP
storage
secure-deletion management

commands

l
. storage

18

‘ TrueErase Overview

= User model

o Use extended . applications
attributes to specify
files/dirs for secure user model
. M e system
deletion B
: TAP
o Compatible to legacy storage
applications secure-deletion management
commands

l J
. , storage

19

‘ TrueErase Overview

= Type/attribute

propagation module . applications
(TAP)
o File system reports HSet mOd?" file system
pending updates AP |
= Uses global unique IDs storage
to track versions secure-deletion management
commands

o Tracks only soft states

l
= No need for mechanisms storage
to recover states 4

20

TrueErase Overview

Enhanced storage-
management layer

Q

Can inquire about file-
system-level info

Added secure-deletion
commands for various
storage media

Disabled some
optimizations (e.g.,
storage-built-in cache)

. applications

user model
I fije system

|
TAP
secure-deletion

commands

‘ storage
I -~ J

21

storage
management

‘ TrueErase Overview

= After a crash

o All replayed and . applications
reissued deletions are

done securely USErMOdClam fie system

o All data/metadata in =
the storage data path TAP
from prior session will secure-deletion

d
be securely deleted commandas

l J
. , storage

storage
management

22

TrueErase Assumptions

Benign personal computing environment

o Laptops, cellular phones

o Uncompromised, single-user, single-file-system,
non-RAID, non-distributed system

Dead forensics attacks
Full control of storage data path

Journaling file systems that adhere to the
consistency properties specified in [SIVAOS]

All updates are reported

23

TrueErase Design

User model

TAP
Enhanced storage-management layer

Exploiting file-system-consistency properties
to identify and handle corner cases

24

User Model

ldeally, use traditional file-system permission
semantics

o Use extended-attribute-setting tools to mark
files/dirs sensitive

Which will be securely deleted from the entire storage
data path

o Legacy apps just operate on specified files/dirs

25

‘Name Handling

= Legacy file-permission semantics

file
dir i-node -
I-node ‘.

permission
A\

\

—-— e e e -
v

26

‘Name Handling

= Legacy file-permission semantics

file
dir i-node -
i-node | I
. 1
- - I
permlssmn‘ :

= [ruekrase’s sensitive status

\

file
dir i-node -
i-node i |
. 1
* sensitive !

status '

\

27

Toggling of the Sensitive Status

Implications
o Tracking update versions for all files at all times

o Or, removing old versions for all files at all times

Truekrase

o Enforces secure deletions for files/dirs that have
stayed sensitive since their creation

28

Name Handling

By the time one can set attributes of a file
o File name may already be stored non-sensitively

Some remedies

o Inherit the sensitive status
Creating a file under a sensitive directory

o smkdir wrapper script

Creates a temporary name, marks it sensitive, and
renames it to the sensitive name

29

TAP Module

Tracks and propagates info from file-system
layer to storage-management layer

Challenges

o Where to instantiate the deletion requests to file
content?

o What and how to track?
o How to interact with TAP?

31

‘ Where to instantiate deletion

requests to file content?

o Can a file system
B sopiications just issue zeroed
blocks?

file system

TAP
storage
management
\ 4
l

32

‘ Where to instantiate deletion

requests to file content?

o Can a file system
B sopiications just issue zeroed
blocks?

file system

TAP

storage
management

l
BEe -8

33

‘ Where to instantiate deletion

requests to file content?

= Instead

. applications w A file system attaches
deletion reminders to

'." file system other deletion requests

(zeroing allocation bits)
TAP
storage
management
l

34

'Where to instantiate deletion
requests to file content?

o Storage-management

. . layer can choose
applications _
secure-deletion

methods
file system = Match the underlying
A storage medium
storage
- management

explicit
erase

l :
B -2 .

35

What to track?

Tracking deletion is not enough

o At the secure-deletion time
Versions of a file’s blocks may have been stored

Metadata may not reference to old versions
0 Need additional persistent states to track old versions

TrueErase deletes old versions along the way

o Overwriting a sensitive data
= Secure deletion + update (secure write)

o Tracks all in-transit sensitive updates

36

What to track?

Tracking sensitive updates is still not enough
o Metadata items are small

o A metadata block can be shared by files with
mixed sensitive status

A non-sensitive reguest can make sensitive metadata
appear in the storage data path

TrueErase tracks all in-transit updates
o For simplicity and verification

37

How to track?

Challenges

o Reuse of name space (i-node number), data
structures, memory addresses

o Versions of requests Iin transit

TrueErase
o Global unique page ID per memory page

38

Tracking Granularity

TrueErase tracks physical sector numbers
(e.g., 512B)

o Smallest update unit
o GUID: global unique page ID + sector number

39

How to interact with TAP?

Report_write() creates a per-sector tracking
entry

Report_delete() attaches deletion reminders
to a tracking entry

Report_copy() clones a tracking entry and
transfers reminders

Cleanup_ write() deletes a tracking entry

Check_info() retrieves the sensitive status of
a sector and its reminders

40

Enhanced Storage-management
Layer
Decide which secure-deletion method to use

o Based on the underlying storage medium
o We used NAND flash for this demonstration

41

NAND Flash Basics

Writing Is slower than reading
o Erasure can be much slower

NAND reads/writes In flash pages

o Deletes in flash blocks
Consisting of contiguous pages

42

NAND Flash Basics

In-place updates are not allowed

o Flash block containing the page needs to be
erased before being written again

In-use pages are migrated elsewhere

Each location can be erased 10K -1M times

43

Flash Translation Layer (FTL)

To optimize performance

o FTL remaps an overwrite request to an erased
empty page

To prolong the lifespan

o Wear leveling evenly spreads the number of
erasures across storage locations

44

Added NAND Secure-deletion

Commands

Secure_delete(pages)

o Copies other in-use pages from the current flash
block to elsewhere

o Issue erase command on the current block
Secure write(page)

2 Write the new page

o Call Secure_delete() on the old (if applicable)

45

Crash Handling

A crash may occur during a secure operation
o Page migration may not complete
Since copies are done first

o No data loss; but potential duplicates

o Journal recovery mechanisms will reissue the
request, and secure operations will continue

46

Wear Leveling

When flash runs low on space

o Wear leveling compacts in-use pages into fewer
flash blocks

Problem: internal storage reorganization
o No respect for file boundaries, sensitive status

47

Wear Leveling

Truekrase

o Stores a sensitive-status bit in per-page control
areas

Used to enforce secure-deletion semantics
o May not always be in sync with the file-system-
level sensitive status
E.g., short-lived files

When the bit disagrees with file system’s secure status,
mark the bit sensitive and treat it as such

48

File-system-consistency Properties

and Secure Deletion

File-system-consistency properties

o A file’s metadata reference the right data and
metadata versions throughout the data path

For non-journaling file systems
o Reuse-ordering & pointer-ordering properties

o Without both (e.g., ext2), a file may end up with
blocks from another file

For journaling file systems
o Non-rollback property

49

‘Without Pointer-ordering Property

applications

TrueErase § file system

storage
management

l
- storage

50

‘Without Pointer-ordering Property

applications
file A’s
metadata

TrueErase i file system = e ia

storage
management

memory

l storage
- storage

51

‘Without Pointer-ordering Property

applications

file A’s
metadata
TrueErase i file system = e ia
storage
management ¥
memory
l storage
storage
file A's
metadata

-

52

‘Without Pointer-ordering Property

applications

TrueErase § file system
storage
management
meory
| storcge
storage
file A's
metadata

-

‘Without Pointer-ordering Property

applications

file B’s
metadata
TrueErase i file system = Peio
storage
management
memory
l storage
storage
file A's
metadata

-

54

‘Without Pointer-ordering Property

applications
file B’s
metadata

TrueErase @§ file system . A

storage
management $
memory
l storage
- storage
file A's _
metadata e Secure deletion of A

can end up deleting

‘—>. B’s block
data

55

Pointer-ordering Property

applications
file A’s
metadata

TrueErase file system = e ia

storage
management

memory

l storage
- storage

56

Pointer-ordering Property

applications
file A’s
metadata

TrueErase file system = e ia

storage
management ¥

memory Data blocks are

l storage propagated first
- ; storage

57

Pointer-ordering Property

applications Gl A + May need to perform
lle A's secure write
metadata
TrueErase @ file system - A - Need to handle

crash at this point

(remove

storage . B unreferenced
management sensitive blocks at
recovery time)

| storage
storage * Need to ensure
persistence (e.qg.,

disabling storage-

built-in caches)

memory

58

Pointer-ordering Property

applications
file A’s
metadata

TrueErase file system = e ia

storage
management ¥
memory
l storage
storage
file A's
metadata

-

59

‘ Without Reuse-ordering Property

applications

file A’s
metadata
TrueErase i file system - Peio
storage
management
memory
l storage
storage
file A's
metadata

-

60

‘ Without Reuse-ordering Property

applications

file A’s
metadata
TrueErase file system 4 .
storage
management
memory
l storage
storage
file A's
metadata

-

61

‘ Without Reuse-ordering Property

applications

file A’s file B’s
metadata metadata
TrueErase _§ file system r M‘—‘
storage
management
memory
l storage
storage
file A's
metadata

-

‘ Without Reuse-ordering Property

applications

file A’s file B’s
metadata metadata
TrueErase file system a m._‘
storage
management $
memory
l storage
- storage
file A's _
metadata e Secure deletion of A

can end up deleting

‘—>. B’s block
data

63

Reuse-ordering Property

applications

file A’s
metadata
TrueErase file system - o
storage
management
memory
l storage
storage
file A's
metadata

-

64

Reuse-ordering Property

Truekr P

—

applications

file system

storage
management

; storage

file A’s
metadata

.
.
L

memory

storage

file A's
metadata

-

A block cannot be

reused until its free

status is persistent

65

Reuse-ordering Property

applications file A's - Pending updates to

the unreferenced
_ r data block should
3 file system A not be written

metadata

storage ‘ ° Unreferegc?d tl)?_)
management memory data blocks
memory need to be wiped
| storage
storage
file A’s
metadata

-

66

Reuse-ordering Property

applications

file A’s
metadata
TrueErase i file system a -
storage 9
management
memory * By pointer ordering,

all prior data
I storage
| J updates are flushed
storage _
- mfe"tzg‘afa . Secure delete the
data block before

- making its free
data :
status persistent

67

Reuse-ordering Property

applications

file A’s
metadata
TrueErase file system A .

storage 9

management « A crash will show

memaory secure deletion in

| storage progress
- storage file A’s . Recover_y |
metadata. mechanism will

_ r reissue file deletion

68

Reuse-ordering Property

applications
file A’s
metadata
TrueErase i file system 4 ‘
storage
management
memory

l ‘ storage
storage .
- file A's Neec! to ensure
metadata persistence (e.g.,
disabling storage-

‘ | built-in caches)

69

Reuse-ordering Property

applications

file A’s
metadata

TrueErase @ file system A « Static file types and
o ‘ ownerships for in-

transit blocks

storage

management memory Still need GUIDs to

track versions

l storage
- storage « Need to handle
file A’s dynamic sensitive
metadata mode changes (once

‘ : marked sensitive,
- always sensitive)

70

Reuse-ordering Property

applications

file A’s file B’s
metadata metadata
TrueErase _§ file system A M‘_‘
storage
management
memory
l storage
storage
file A's
metadata

71

Non-rollback Property

Older versions of updates will not overwrite
newer versions persistently

Implications

o An update followed by a secure deletion will be
applied in the right order

o Need to disable some optimizations at the
storage-management layer (e.g., built-in cache)

o Merging/splitting requests okay (we track sectors)

o A consolidated update is sensitive, if one Is
sensitive

72

Structure of Corner Cases

Ensuring that a secure deletion occurs before
a block is persistently declared free

Hunting down the persistent sensitive blocks
left behind after a crash

Making sure that secure deletion is not
applied to the wrong file

Making sure that a securely deleted block is
not overwritten by a buffered unref block

Handling versions of requests in transit

73

Crash Handling

At recovery time

o Replay journal and reissue incomplete deletion
operations, with all operations handled securely

o For flash, securely delete the journal and sensitive
nlocks not referenced by the file system

o For disk, securely overwrite journal and all free
space

74

TrueErase Implementation

Linux 2.6.25

File system: ext3 with its jbd journaling layer

o Proven to adhere to the file-system-consistency
oroperties [SIVAOS]

NAND flash: SanDisk’s DiskOnChip
o Lack of access to flash development environ.
o Dated hardware, but the same design principle

Storage-management layer: Inverse NAND
File Translation Layer (INFTL)

75

Implementation-level Highlights

Steps Iin deletion sequence can be expressed
In secure write/delete data/metadata

Exploited group-commit semantics
o Reduced the number of secure operations

Handled buffer/journal copies

Handled consolidation within and across
journal transactions

76

Verification

Basic cases

o Sanity checks

o PostMark with 20% sensitive files

o Reporting of all updates

o File-system-consistency-based corner cases

TAP state-space verification

77

TAP State-space Verification

State-space enumeration

o Tracked down ~10K unigue reachable states,
~2.7M state transitions

o Reached depth of 16 in the state-space tree
Used two-version programming for
verification

2 One based on conceptual rules

o One based on the TAP kernel module

o ldentified 4 incorrect rules and 3 bugs

78

Empirical Evaluation

Workloads

o PostMark

Modified with up to 10% of sensitive files
0 Sensitive files can be chosen randomly

Each file operation takes < 0.17 seconds
0 Good enough for interactive use

0 OpenSSH make + sync with 27% of files that are
newly created marked sensitive
Overhead within a factor of two

79

Related Work

TRIM command

FADED

Type-safe disk

Modified YAFFS with secure-deletion support

Truekrase

o Legacy-compatible, persistent-state-light,
centralized info-propagation channel

80

Lessons Learned

Retrofitting security features is more complex
than we thought

The general lack of raw flash access and
development environments

o Vendors try to hide complexities

o File-system consistency and secure deletion rely
on exposed controls/detalls for data
layout/removal

81

Lessons Learned

A holistic solution would not be possible

o Without expertise across layers and research
fields

Highlights the importance of knowledge
iIntegration

82

Conclusion

We have presented the design,

Implementation, evaluation, and verification
of TrueErase

o Legacy-compatible, per-file, secure-deletion
framework

A secure-deletion solution that can withstand
diverse threats remains elusive

o TrueErase Is a promising step toward this goal

83

Acknowledgements

National Science Foundation

Department of Education

Philanthropic Educational Organization
~lorida State University Research Foundation

84

Questions?

Google keyword: TrueErase

Thank you for your attention!

85

