Flash Memory and PRAM: Sleeping with the Enemy

- Accelerating In-Page Logging with PRAM -

Apr. 19, 2011

Sang-Won Lee

Motivation??

NVRAMOS 2010

Flash is Coming

- The age of flash-based DBMSs is coming
 - Oracle's TPC-C BM result @ 2010 using Exadata
 - ✓ Oracle + Sun Flash Storage
 - ✓ Total cost: 49M \$
 - Storage: 23M \$
 - Sun Flash Array: 22M \$
 - 720 2TB 7.2K HDD: 0.7M\$

- IBM proposed SSD Buffer (VLDB 10)
- And MS SQL Server @ Jim Gray Lab ...

In-Page Logging (IPL) @ SIGMOD 2007

Block Merge in In-Page Logging

Merge: new internal operation in IPL

Transactional IPL (TIPL) @ ICDE 2011

New Recovery & Multiversion Store

- Better write performance
- Transactional support (with nominal overhead)

IPL: Threats and a Reliefer

- IPL key point
 - Write reduction by capturing minimal change (or delta)
- Threats
 - The smallest unit of write is expected to increase: 512B → 2KB
 - √ The benefit of IPL can reduce
 - Read overhead
- PRAM

Internal Fragmentation

- Reduced write buffering
- Frequent merges
- Wear leveling

PRAM Researches in DB Communities

Query processing using PRAM @ CIDR 2010

PRAM as Log Device @ ICDE 2011

Flash Memory vs. PRAM

The performance of PRAM is far lagging behind its promise

	Access time		
Media	Read	Write	Erase
Magnetic Disk [†]	12.7 ms (2KB)	13.7 ms (2KB)	N/A
NAND Flash [‡]	75 μ s (2KB)	250 μ s (2KB)	1.5 ms (128KB)
PCRAM [¶]	206 ns (32B)	$7.1~\mu s$ (32B)	N/A
DRAM§	70 ns (32B)	70 ns (32B)	N/A

[†]Disk: Seagate Barracuda 7200.7 ST380011A;

[‡]NAND Flash: Samsung K9F8G08U0M 16Gbits SLC NAND [15];

PCRAM: Samsung 90nm 512Mb PRAM [8];

§DRAM: Samsung K4B4G0446A 4Gb DDR3 SDRAM [16]

Table 1: Access Speed: Magnetic disk vs. NAND Flash vs. PCRAM vs. DRAM

Flash vs. PRAM

Write performance of PRAM

- Key difference b/w Flash and PRAM: (from IPL viewpoint)
 - Faster read/write latency for small size data
 - Byte-addressability for read and write

A Personal Prediction on Flash and PRAM

- Although some advocates of non-volatile memory predict that flash memory will give way to non-volatile memory soon(e.g. by 2012),
- We believe that they will co-exist, complementing each other, for a while until the hurdles in its manufacturing process are lifted and non-volatile memory becomes commercially competitive in both capacity and price.

- Vendors did not find any killer application for PRAM.
 - Chicken and egg dilemma!

IPL-P: IPL with PRAM

Advantages

- Fast write latency for small log data
- Delay merge operation (e.g. 4 writes → 80 writes)
- Reduce (or almost hide) the read overhead of IPL
- Can use commercial Flash SSDs (even MLC-based SSD)

IPL-P: Performance (Simulation)

Figure 2: IPL Performance: Flash-only vs. Hybrid (5M records)

IPL -P: Performance on Real Board

System Architecture

IPL -P: Performance on Real Board (2)

Hardware

IPL –P: Performance on Real Board (3)

Flash vs. PRAM: On-Board Performance

IPL –P: Performance on Real Board (4)

With 8K log area

IPL –P: Performance on Real Board (5)

By varying log area size

Conclusion and Future Works

- Flash memory and PRAM will complement each other ...
- As a model case of hybrid storage design based on flash memory and PRAM, we proposed IPL-P

- Future works
 - DIMM module?
 - Implement TIPL-P using MySQL inno DB storage engine