Use of PCM in Computer Systems: We need an End-to-End Exploration

Sangyeun Cho
Computer Science Department
University of Pittsburgh

Era of new memories near

Since then (arch. & design community)

- Wear leveling & memory attack handling
 - Start-Gap [MICRO '09]
 - Security Refresh [ISCA '10]
 - On-line attack detection [HPCA '11]
- Fault masking
 - ECP [ISCA '10]
 - SAFER [MICRO '10]
 - FREE-p [HPCA '11]
- Process variation awareness
 - Characterization & mitigation [MICRO '09]
 - Mercury [HPCA '11]
 - Variation vs. endurance [DATE '11]
- DAC-2011 has three papers
 - "Power Management" (Prof. Yoo), "Wear Rate Leveling" (ICT, China), "Variable Partitioning" (Hong Kong City Univ.)

Agenda

- PCM 101
- Industry trends
- PCM usage models
- Summary

Phase-change memory (PCM)

Amorphous = high resistivity

Crystalline = low resistivity

(Pictures from Hegedüs and Elliott, Nature Materials, March 2008)

PCM asymmetries

Note: Write is the thing

- Cycling of cell states leads to cell aging
 - Reported write endurance 10⁵ to 10⁶ (who said 10¹²?)
- Burdensome to scale write bandwidth
 - High write currents (more bits means higher currents)
 - Reliability problem, added system design costs, ...
- Theoretically, scaling helps with both problems
- Architectural techniques to reduce bit updates

cache block replaced to be written to PCM

"New data" 1 1 1 1 1 1 1 0 0 0 1 0 0 1

"Old data" 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0

cache block replaced to be written to PCM

"New data"

11 bits are different!

"Old data" 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0

cache block replaced to be written to PCM

Only five bits are different!

cache block replaced to be written to PCM

(5+1) bits need be updated...

- Savings in bit updates can improve energy and endurance
- Flip-N-Write updates N/2 bits maximum
- Write-current limited write time (M bits, S bps)
 - Conventional: (M/S)×T_{SET}
 - Differential write: T_{READ} + (M/S)×T_{SET}
 - Flip-N-Write: $T_{READ} + (M/2S) \times T_{SET}$

Agenda

- PCM 101
- Industry trends
- PCM usage models
- Summary

Samsung

Techinsights decap '10 Chung et al. ISSCC '11 Lee et al. ISSCC '07 Lee et al. JSSC '08 · VGIX11A1 CAPAD and CAIN Buffer 1Gb @58nm 512Mb @90nm 512Mb @60nm? LPDDR2-N Diode switch design Diode switch design "Write skewing" 266MB/s read Believed to be a tech.-6.4MB/s write 4.64MB/s write (x16) migrated design "DCWI" (~Flip-N-Write)

Write skewing

 To distribute program current

Main and skewed group

 Reduced peak current injected to the write driver

~70% of the conventional simultaneous-write scheme

(H. Chung et al. ISSCC '11)

Data comparison write w/ inversion

Concept

Set state: 1

Reset state: 0

OLD (Core)	NEW (PB)	EVENT 1 → 0	EVENT 0 → 1	Eff. # of event	Eff. # of event
0	0	0	0	0	0
0	1	0	1	0	1*α
1	0	1	0	1	0
1	1	0	0	0	0

α: the ratio of energy to change the state

(H. Chung et al. ISSCC '11)

Data comparison write w/ inversion

Numonyx (now Micron)

Agenda

- PCM 101
- Industry trends
- PCM usage models
- Summary

Where does PCM fit?

PCM as program memory

- "Replace NOR in embedded platforms"
 - Fast read speed, good retention, reasonable write bandwidth (a few MB/s)
 - First target of both Micron & Samsung
- PCM has an edge due to density, scalability, and write speed (use scrubbing to improve reliability)
- Today, common NOR parts are 64Mb~512Mb
- Initial PCM offerings
 - Micron: 128Mb (x8, x1) moving to 1Gb (x16?)
 - Samsung: 512Mb (x16) moving to 1Gb (x16)

Where does PCM fit?

PCM main memory?

- "Replace (a good chunk of) DRAM"
- Why this makes sense
 - DRAM scaling is hard (no known solutions at < 20nm)
 - DRAM consumes more power than wanted, even at idle time
 - PCM can scale better; PCM is power-efficient on reads & at idle time
- Why this may NOT happen (easily)
 - PCM has poor write bandwidth (as of now)
 - DRAM camp has been capable of overcoming hurdles
 - E.g., new DRAM designs and interfacing schemes under consideration to improve on power & reliability
 - PCM is not getting enough attention (~investment)
 - Other competing technology maturing in the mean time?

PCM main memory?

- "Replace (a good chunk of) DRAM"
- Why this is attractive
 - PCM can enable low-power servers [ISCA '09]
 - Instant on/off [Prof. Noh's talk at Pitt, '09]
 - Fast, potentially no-overhead checkpointing and versioning [Venkataraman et al., FAST '11]
 - File system meta-data storage [Park and Park, IEEE TC '11]

More usage models

- PCM provides working memory space and (very highspeed) storage space
- Fast application launching via pre-loaded binary image
- Fast local checkpointing in supercomputing platforms
- Novel applications that require gigantic memory space

PCM main memory?

Traditional dichotomy

PRISM

- =Persistent RAM storage monitor
 - To study a PRAM storage's low-level behavior
 - To guide PRAM storage designs
- [Jung and Cho, ISPASS '11]

PRISM

PRISM (example)

PRISM (example)

Memory + storage = memorage?

"memorage" [Jung and Cho, CF '11)

Memorage benefits (elapsed time)

Memorage benefits (lifetime)

Where does PCM fit?

PCM as main storage medium

- "Replace NAND in high-speed SSDs"
- PCM has good potential (theoretically)
 - Lower latency than NAND (~100ns vs. ~100μs)
 - More scalable than NAND (~10nm vs. ~20nm)
 - Much simpler management (e.g., in-place update)
 - Potentially good bandwidth
 - Fast paging storage?

Huge challenges ahead

- NAND density improving, at least for now (scaling & TLC + better error handling)
- NAND bandwidth (not latency) improves
- NAND momentum ensures continued investment

E.g.: PCM SSD

	2010	(Numonyx)
Min Density	64GB	
Max Density	512GB	
Interface	PCIe 2.0x8	ioDrive Oc
Read Bandwidth	4.0 GB/s	NAND Type
Write Bandwidth	400 MB/s	Read IOPS
Input Voltage	Up to 12V	Write IOPS
Power	20W	75/25 Mix IC
Read Latency	5μS (hw)	Read Bandy
Write Latency	150μS	Write Bandw
Physical Dimensions	Full Size PCle Card	Access Late Bus Interfac
Temperature	0°to +55°C	Operating S

(Fusionio)

ioDrive Duo Capacity	320GB	640GB	640GB
NAND Type	SLC (Single Level Cell)	SLC (Single Level Cell)	MLC (Multi Level Cell)
Read Bandwidth (64kB)	1.5 GB/s	1.5 GB/s	1.5 GB/s
Write Bandwidth (64kB)	1.5 GB/s	1.5 GB/s	1.0 GB/s
Read IOPS (512 Byte)	261,000	273,000	196,000
Write IOPS (512 Byte)	262,000	252,000	285,000
Mixed IOPS (75/25 r/w)	238 000	236,000	138 000
Access Latency (512 By	26 µs	26 μs	29 μs
Bus Interface	PCI-Express x4/x8 or PCI	Express 2.0 x4	

ioDrive Octal Capacity	5.12TB
NAND Type	Multi Level Cell (MLC)
Read IOPS (512 B)	1,190,000
Write IOPS (512 B)	1,180,000
75/25 Mix IOPS (512 B)	729 000
Read Bandwidth (64 kB)	6.0 GB/s
Write Bandwidth (64 kB)	4.4 CB/s
Access Latency (512 Byte	30µs
Bus Interface	PCI-Express x15 Gen2.0
Operating Systems	64-Bit Microsoft Server 2003/2008, 64-Bit Microsoft Windows XP/Vista/Win7, RHEL 4/5, SLES 10/11, OEL v4/v5

E.g.: PCM SSD

The maximum number of outstanding requests allowed at a time

E.g.: PCM SSD

The maximum number of outstanding requests allowed at a time

Where does PCM fit?

PCM as hidden specialist in a drive

- "Provide specialized non-volatile capacity"
- PCM can help boost the performance of HDD
 - Provide fast storage capacity at tier 1
 - Capture small writes, keep working set, and minimize arm movements
 - But can't NAND do the same? (many hybrid approaches exist)
- PCM can help ease NAND write complexities
 - E.g., [Sun et al., HPCA '09][Kim et al., EMSOFT '08]
 - NAND write endurance worse than PCM by orders of mag.
 - Total write data volume = C(PCM)×10xxx + C(NAND) ×10yyy
 - NAND latency slower than PCM
 - Similar reasoning about performance is possible
- For PCM to become the tier 1 within a storage device, how much capacity & bandwidth is needed?

Where does PCM fit?

PCM as low-power search memory

"Keep inter-networking tables in PCM"

PCM as low-power search memory

- "Keep inter-networking tables in PCM"
- Many data structures in inter-networking are readintensive, e.g., IP lookup table, rules, patterns
 - Updates are relatively low bandwidth and incremental
- PCM could be used to construct TCAMs
- There are algorithms that use more regular RAM structures, e.g., [Hanna, Cho, and Melhem, Networking '11]
- This is a niche application domain where some interesting things can be done

Agenda

- PCM 101
- Industry trends
- PCM usage models
- Summary

Summary

- PCM offers new opportunities to improve platform capabilities and end-user experiences
- Drop-in replacement of established memory technology does not work
 - Performance and power asymmetry
 - Errors
 - Falls short of fully utilizing PCM features
- Optimal solutions will likely resort to horizontal & vertical collaboration of multiple system components
 - And the goal should be to improve the whole system
 - Are there new ideas?

Why not ...

Academic researchers

- ... we explore system designs end-to-end (both horizontally and vertically) together, identify new opportunities, and specify performance, power, and reliability requirements?
- Manufacturers will appreciate such a wish list

Industry

- ... you "leak" information on real-world technical challenges you see and a realistic technology roadmap?
- Researchers will love a laundry list of real problems

CAST

(Computer Architecture, Systems, & Technology) Laboratory

