
SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Sang-Won Lee
Info & Communication Engineering

Sungkyunkwan University

Bongki Moon
Computer Science & Engineering

Seoul National University

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

SQLite
 SQLite is the standard database for smartphones

 Google Android, Apple iOS

 Almost every apps uses SQLite

 Why SQLite?

 Development productivity

 Solid transactional support

 Lightweight runtime footprint

 SQLite takes a simpler but costlier journaling
approach to transactional atomicity

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

SQLite Journaling
 Two journaling modes in SQLite

 Rollback journal mode (RBJ)

 Write ahead logging (WAL) (≠ Aries-style physiological WAL)

 SQLite journaling mode is the main cause of slow performance
in smartphone applications
 Kim [USENIX FAST12], Lee [ACM EMSOFT 12]
 70% of all write requests are from SQLite and mostly random

 eMMC flash card is the default storage in smartphones

• SQLite optimization is the practical and critical
problem

• We propose a transactional FTL for SQLite, X-FTL

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Overview

 Identify a performance problem in SQLite and its causes

 Develop new solution for flash-aware atomic propagation
 Implement X-FTL using OpenSSD platform

 Extend the storage interface for transactional atomicity

 Demonstrate SQLite and ext4 file system can benefit from X-FTL
with only minimal changes in their code

 Show that 2x speedup can be achieved in SQLite

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Transactional Atomicity in SQLite

 A transaction updates one or more pages

 {P1, ..., Pn}

 Steal and force policies are taken in SQLite

 Uncommitted changes can be propagated

 Atomic write of multiple pages may not be enough

 Atomic propagation of updated page(s) by TXs is
crucial for commit, abort, and recovery in SQLite

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Ex) Two pages (P1,P2) are updated
 Transactional atomicity is all or nothing

 Force policy need write both pages at commit (ALL)
 Steal policy allows overwriting P1 prior to commit, so undoing

P1’s write may be necessary upon abort (NOTHING)
 Recovery from crash checks whether both pages are successfully

written, and if not, need to undo (ALL or NOTHING)

RAM

P1_oldStorage P2_old

P1_oldP1_new P2_oldP2_new
Transaction commit

Transaction abort

Recovery from crash

P1_new P2_new

Steal
need to undo P1’s write

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Journaling in SQLite
 Two journal modes

 Rollback journal (RBJ, default) and Write Ahead Logging (WAL)

 Why SQLite’s own journaling modes, instead of file system
journaling?
 Portability : every file system does not support journaling
 Steal policy semantics

RAM P1_new P2_new

P1_old
Storage

P2_old Journal File
(Rollback/WAL)

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Rollback Journal
 Rollback Journal (RBJ)

 Old page images are backed up in RBJ file for undo
 RBJ file is deleted at commit time

 Transaction commit is regarded as success only after RBJ file is deleted

 Run-time overhead
 RBJ file creation/deletion
 3 fsync() operations per transaction
 Two writes per each update page
 A logical update can cause

 22 physical page writes [Lee and Won 12]

RAM

P1_old
Storage

P2_old

RBJ file (per TX)

before Update

P1_old P2_oldP1_new P2_new Transaction
Commit

2 fsync()s RBJ filefsync() DB file

Journal file is deleted

Rollback Mode

Database File Rollback File

P1_old

TX Begin

P1_new

File Creation

Pn_old

Pn_new

Write(P1)
...

Write(Pn)

Commit

File Deletion

fsync()

Journal
Header

fsync()

fsync()

- TX Completion -

...

...

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Write Ahead Logging
• Write Ahead Logging (WAL)

 Recently introduced, and better performance than RBJ
 WAL file is reused and shared by many transactions
 New page images are appended to WAL file for redo
 Check-point when it becomes full
 No file creation/deletion overhead
 less frequent fsync()
 But, 2X writes per each updated page

RAM

P1_old
Storage

P2_old

WAL file

P1_old P2_oldP1_new P2_new Transaction
Commit

FULLCheck point

P1_new P2_new

Commit Donefsync() WAL filefsync() DB file

WAL Mode

Database File WAL File

P1_new

Pn_new

fsync()

- TX Completion -

P1

Pn

WAL File
full

fsync()

...
...

...

... Checkpoint

after Update

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Flash Copy-on-Write
 In-place update is not allowed in flash memory
 FTLs take Copy-on-Write (CoW) strategy

 Both old and new copy of a page co-exist

 But, current FTLs change L2P address mapping at the granularity of
page, not a set of pages
 Can not support atomic propagation of multiple pages

TX’s update set = {P1, P2}

P1 ... P2 Pn

Page Mapping
Table

Flash Chips Old copy of P1, … , Pn

LPN PPN

... ...

P1

P2

... ...

Pn

... ...

P1 P2

P1 New Page
P2 Old Page

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

CoW and Shadow Paging
 CoW strategy provides an opportunity for transactional atomicity
 What if FTL can support atomic remapping of multiple page

updates by a transaction?
 FTL need to provide transactional interface to the upper layer
 For undo, old pages should be exempt from GC until TX commit

TX’s update set = {P1, P2, ..., Pn}

P1 ... P2 Pn

New copy of P1, … , Pn

Page Mapping
Table

Flash Chips

Old copy of P1, … , Pn

LPN PPN

... ...

P1

... ...

Pn

... ... Old mapping
New mapping

P1 P2 Pn

Atomic remapping!!

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Architecture
 Transactional mapping table : X-L2P table

 Page mapping table : L2P table (original FTL)
 Transaction ID, Logical Page No, Physical Page No(new), Status

 Garbage collection
 Prevent active transaction pages from GC
 Only pages invalidated by committed transactions

 Atomic propagation of mapping information at commit
 Atomic remapping of committed entries in X-L2P table to L2P table

-

P1

New copy of P1, … , Pn

Propagation
at commit

TID

Transactional
Page Mapping Table (X-L2P)

LPN PPNnew

: :

Ti P1

: :

Ti Pn

Page Mapping
Table (L2P)

LPN PPN

: :

P1

: :

Pn

: :

Read(Ti, Pi) , Write (Ti, Pi), Commit(Ti),
Abort(Ti)

Storage Interface

P2 Pn P1 P2 Pn

Old copy of P1, … , Pn

X-FTL

Recovery

Commit/
Abort

: :

Status

:

Active

:

Active

:

Write/
Read

Traditional FTL
with Garbage
Collection

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extended API (SATA Interface)
 Transaction ID is passed to storage with Read/Write command

 Add Commit/Abort command

-
File System

-

Update P1, P2, … , Pn, Commit/Abort

SQLiteApplication

P1

New copy of P1, … , Pn

Propagation
at commit

TID

Transactional
Page Mapping Table (X-L2P)

LPN PPNnew

: :

Ti P1

: :

Ti Pn

Page Mapping
Table (L2P)

LPN PPN

: :

P1

: :

Pn

: :

Read(Pi), Write(Pi),

Commit(Ti),
Abort(Ti)

Storage Interface

P2 Pn P1 P2 Pn

Old copy of P1, … , Pn

X-FTL

Recovery

Commit/
Abort

: :

Status

:

Active

:

Active

:

Write/
Read

File System Interface

Traditional FTL
with Garbage
Collection

Read(Ti, Pi) , Write (Ti,
Pi),

fsync, ioctl(abort)

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Commit Procedure

Flash Chips

DRAM

commit(Ti)

1. Change the status of
Ti’s entries in X-L2P
table to Committed.

X-L2P Table (new)

2. Flush X-L2P table to
new location in flash

X-L2P

return success

3. Update the location of X-L2P
table in flash meta-block

X-L2P
Address

X-L2P Table (old)

X-L2P
Address

L2P

Storage Interface

4. Remap LPNs updated
by Ti with new PPNs

TID LPN PPNnew Status

: : : :

Ti P1 .. Active

: : : :

Ti Pn .. Active

: : : :

LPN PPN
: :

P1 ..
: :

Pn ..
: :

Committed

Committed

X-L2P
Address

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Transactional Atomicity in X-FTL

RAM

P1_old
Storage
with X-FTL P2_old

P1_oldP1_new P2_oldP2_new
Transaction commit

fsync to DB fileCommit done

fsync count Write count

RBJ
3 fsyncs per tx
- 2 syncs for journal
- 1 sync for db

1 page write
 2 page writes

WAL
1 per tx and 1 per checkpoint
- 1 sync for journal
- 1 sync for db when checkpoint

1 page write
 2 page writes

X-FTL
1 per tx
- 1 sync for db

1 page write
 1 page write

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Performance Evaluation
 Evaluation setup

 OpenSSD development platform :
 MLC NAND : Samsung K9LCG08U1M

 Page size : 8KB, Block : 128 pages

 87.5 MHz ARM, 96KB SRAM, 64MB DRAM

 Linux ext4 file system (kernel 3.5.2)
 Intel core i7-860 2.8GHz and 2GB DDR3
 SQLite 3.7.10

 Workloads
 Synthetic

 TPC-H partsupply table, random update, adjust transaction length

 Android smartphone
 SQL trace using Android emulator, RL bench, Gmail, Facebook, web browser

 Database
 TPC-C (DBT2), read intensive, TPC-C original

 File system benchmark
 Flexible I/O(FIO), random write, adjust fsync frequency

http://www.openssd-project.org

http://www.openssd-project.org/

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Synthetic Workload
 TPC-H partsupply table (60,000 tuples, 220 bytes tuple)

 Random update, 1-20 page updated by a transaction

0

100

200

300

400

500

600

0 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

of updated pages per transaction

RBJ

WAL

X-FTL

67%

91%

203

244

289

63

93 94

31 33 40

0

50

100

150

200

250

300

350

30% 50% 70%

천

GC Valid Page Ratio

Write count (x1,000)
RBJ

WAL

X-FTL

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Android Workloads

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Conclusion
 X-FTL: Transactional FTL for SQLite databases

 Offload the transactional atomicity semantics from
SQLite to flash storage by leveraging the copy-on-write
strategy of modern SSDs.

 Achieve the transactional atomicity almost for free
eliminating redundant writes by 50%.

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Bongki Moon
Computer Science & Engineering

Seoul National University

Alon Efrat
Computer Science

University of Arizona

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Motivation: Traditional Mapping Schemes
 Page mapping

 Highly flexible due to the size of granularity (page)

 As the capacity of flash memory grows, the mapping table
requires more space

 Block mapping
 Smaller mapping table size

 Less flexible and impractical

Both page and block mappings have limitations

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extent-Based Mapping (1)
 I/O request consists of a logical start address and the

number of sectors to read or write

 Treat a given I/O request as an extent which serves as
the basic mapping unit

 Store extents in the mapping table as a whole unit

 The degree of granularity changes determined by each

individual write request

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extent-Based Mapping (2)
 Upon a write request:

 Create new mapping information if the request writes
into a clean logical area

 Update existing mapping information if the request
overwrites any valid data

 Upon a read request:

 Treat the request as an inquiry extent

 Search for all existing extents that overlap the inquiry
extent

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Extent Trie Design
 VET is a logical (virtual) trie of binary strings

 Each binary string is composed of 0’s, 1’s, and *’s

 Don’t care bits (*’s)
 Only appear at the end of a string

 A string with don’t care bits represents an extent whose
length is a power of two

 E.g. 0010**** can be used to represent
 Logical start address: 00100000

 Length: 16

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Canonical Extent

 A canonical extent <s, l> can always be represented by
a single binary string

 Obtained by replacing the least significant zeros of s
with 𝑙𝑜𝑔2 l many ‘*’ bits

 E.g. canonical extent <8, 4> <000010**>

 Not all extent has a power-of-two length

 Partition an extent to one or more canonical extents

 Serves as a key to identify each node

An extent <s, l> is said to be canonical if the length l is
a power of two and the start address s is a multiple of l

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Trie Example

e1 = {<0*******>, <1000****>}
e2 = {<11001***>, <11010***>}

e3 = {<111*****>}

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Trie Design
 Only a leaf node can have an extent

 Internal node just serves as a helper

 VET is a virtual trie, but it physically stores canonical
extents in a hash table

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Update for Write Request (1)
 Inserting an extent:

 Locate any existing extents overlapping the given extent

 If overlaps are found, reinsert the existing extents
updated by the overlap and delete outdated extents

 Add the given extent

 LIS (Linear Insertion Scheme):

 VET creates all of a given extent’s ancestor nodes and
adds the canonical extent itself to the virtual trie

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Update for Write Request (2)
 Deleting an extent example (partial invalidation):

 Extent e4 = <1100100*> arrives at the trie

 Since e4 overlaps e2 = {<11001***>, <11010***>},

e2 is decomposed into e4 and e5

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Search for Read Requests
 Perform a binary search against the nodes

 Search starts at the mid point of the root-to-bottom
path (replace the second half of the string with ‘*’ bits)

 Lookup succeeds:

 Match found in a leaf node: terminate the search

 Match found in an internal node: continue on the lower
half (less * bits)

 Lookup fails:

 Continue by searching upwards (more * bits)

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Search for Read Request Example
 Read request = 11001100

 1st search key = <1100****>

 2nd search key = <110011**>
(match found in an internal
node)

 3rd search key = <11001***>
(lookup failed)

“up” path
in case of
lookup fail

“down”
path
in case of
lookup
success

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Optimization - Binary Insertion Scheme
 Some ancestors for a canonical extent are not used for

the binary search

 Add only an indispensable internal node(s)

 Less time and memory for inserting an extent

 Improvements on LIS in terms of memory usage and
processing time

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Memory Overhead Comparison

VET used much less
memory than page
mapping table (PMT)
or hybrid mapping
table (HMT)

 finance: OLTP

 homes, wdev: MS
exchange servers

 wsf: web surfing

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Scalability Test

As the space got
larger, the traditional
schemes suffered
from enormous
memory overhead

while VET remained
flat

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

However, …
 Updating and retrieving mapping information takes

more time than PMT.

 Need further optimization for the overhead.

