Two New FTLs : X-FTL and VET, Bongki Moon

SQLite

» SQLite is the standard database for smartphones
e Google Android, Apple iOS
e Almost every apps uses SQLite
* Why SQLite?
e Development productivity
e Solid transactional support

e Lightweight runtime footprint

» SQLite takes a simpler but costlier journaling
approach to transactional atomicity

LGHS
g%& SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

SQLite Journaling

Two journaling modes in SQLite
e Rollback journal mode (RBJ)

e Write ahead logging (WAL) (# Aries-style physiological WAL)

SQLite journaling mode is the main cause of slow performance
in smartphone applications

e Kim [USENIX FAST12], Lee [ACM EMSOFT 12]
e 70% of all write requests are from SQLite and mostly random

eMMC flash card is the default storage in smartphones

- SQLite optimization is the practical and critical
problem

- We propose a transactional FTL for SQLite, X-FTL

N

4

[

4
'§

s

<

Wi

(2

»,

v

.\p
xﬁ SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Overview

Identify a performance problem in SQLite and its causes

Develop new solution for flash-aware atomic propagation
e Implement X-FTL using OpenSSD platform

e Extend the storage interface for transactional atomicity

e Demonstrate SQLite and ext4 file system can benefit from X-FTL
with only minimal changes in their code

Show that 2x speedup can be achieved in SQLite

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Transactional Atomicity in SQLite

A transaction updates one or more pages

e {P1, ..., Pn}
Steal and force policies are taken in SQLite

e Uncommitted changes can be propagated

e Atomic write of multiple pages may not be enough
Atomic propagation of updated page(s) by TXs is
crucial for commit, abort, and recovery in SQLite

RS

L4
E} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

.. g

Ex) Two pages (P1,P2) are updated

Transactional atomicity is all or nothing
 Force policy need write both pages at commit (ALL)

e Steal policy allows overwriting P1 prior to commit, so undoing
P1’s write may be necessary upon abort (NOTHING)

e Recovery from crash checks whether both pages are successfully
written, and if not, need to undo (ALL or NOTHING)

Transaction commit
RAM P1 new P2 new :
— — Transaction abort

Ctaanl

need to undo P1’s wr Y
Storage L m ' P2 old

Recovery from crash

ST 4
3 .Lﬁ%

P

¥ SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

VL

~ Journaling in SQLite

* Two journal modes
 Rollback journal (RBJ, default) and Write Ahead Logging (WAL)
* Why SQLite’s own journaling modes, instead of file system
journaling?
e Portability : every file system does not support journaling
e Steal policy semantics

RAM P1 new P2_new

Storage
Pl old | | P2 old Journal File
4 (Rollback/WAL)

'
%«_LML SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

s\‘gf- wh

_ Rollback Journa

* Rollback Journal (RB]J)
Old page images are backed up in RB]J file for undo

Storage

RBJ file is deleted at commit time

« Transaction commit is regarded as success only after RB]J file is deleted
* Run-time overhead

RBJ file creation/deletion
3 fsync() operations per transaction
Two writes per each update page

A logical update can cause
» 22 physical page writes [Lee and Won 12]

before Update

/\fm DB file

2 fsync()s RLfile/\

P1 old| | P2 old |

RBI file (per TX)

Rollback Mode

Database File Rollback File

———————————

TX Begin :_Fik_i _c_r ?E_'t_i?rl:
Write(P1) } Plold |
Write(Pn) " Pn_old
Commit i fsync() i
________ v

{ Journal

:\ Header

BN N

} fsync()

- TX Completion -

I

=
gﬁ%& SNU COMPUTER SCIENCE & ENGINEERING

Two New FTLs : X-FTL and VET, Bongki Moon

~ Write Ahead Logging

Write Ahead Logging (WAL)

WAL Mode

Database File WAL File

——————————

e Recently introduced, and better performance than RBJ -----------4 Pl new |

e WAL file is reused and shared by many transactions

e New page images are appended to WAL file for redo --{ Pn_new

¢ Check-point when it becomes full (" fsync()

e No file creation/deletion overhead - TX Completion -

less frequent fsync() :
But, 2X writes per each updated page

o
RAM : Checkpoint :
- :
| z

after Update

//7 .
(—_fsync() DBfile Check point #ynch) Wb

—

WAL file_

N

Storage

L\‘g"\’

g%& SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

. g

~ Flash Copy-on-Write

In-place update is not allowed in flash memory
FTLs take Copy-on-Write (CoW) strategy
* Both old and new copy of a page co-exist

But, current FTLs change L2P address mapping at the granularity of
page, not a set of pages
e (Can not support atomic propagation of multiple pages

LPN | PPN
P1 > New Page
P2 2 Old Page
P1 el g
T~
P2 L TX’s update set = {P1, P2}
Page Mapping ‘\
Table e
Pn B
|‘ -~
\
‘ -~
‘ﬁ A BRES A
P1 P2 Pn P1
\)
\ 4
Flash Chips Old copy of P1, ..., Pn
- x@} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

_ CoW and Shadow Paging

* CoW strategy provides an opportunity for transactional atomicity

* What if FTL can support atomic remapping of multiple page
updates by a transaction?

e FTL need to provide transactional interface to the upper layer
e For undo, old pages should be exempt from GC until TX commit

Page Mapping
Table

Flash Chips

%
4

<R

D

o
Ay,

@‘

, Pn}

LPN | PPN TX’s update set = {P1, P2, ...
b i Atomic remapping!!
P i
> - New mappin
(. Ol mappmg) EC
"T"-P--.q.,.- B—— "~
-‘ ~“~; T T
P1 P2 Pn P1 | P2 Pn

\

\ §

Old copy of P1, ..., Pn

gy SNU COMPUTER SCIENCE & ENGINEERING

Y
New copy of P1, ..., Pn

Two New FTLs : X-FTL and VET, Bongki Moon

“X-FTL: Architecture

Transactional mapping table : X-L2P table
e Page mapping table : L2P table (original FTL)

e Transaction ID, Logical Page No, Physical Page No(new), Status
Garbage collection

e Prevent active transaction pages from GC
e Only pages invalidated by committed transactions
Atomic propagation of mapping information at commit
e Atomic remapping of committed entries in X-L2P table to L2P table

Storage Interface

Read(Ti, Pi) , Write (Ti, Pi), Commit(Ti), !
Abort(Ti)
/ Page Mapping [Transactional X-FTL - \
Table (L2P) Page Mapping Table (X-L2P)
LPN | PPN /‘\ TID | LPN | PPNnew | status =
Traditional FTL . '

P1

. : : : Commit/
Propagation . -

with Garbage : \\: at commit T_' P_l \\ ACt."’e Abort

Collection Pn | | J - - '

n

_
o
=]
o
N
i)
=]
(o
iy
3 |
N
<
)

)
New copy of P1, ..., Pn

Old copy of P1, ..., Pn

4
i3
2
Cl

Py
>

¢ SNU COMPUTER SCIENCE & ENGINEERING

Two New FTLs : X-FTL and VET, Bongki Moon

~Extended AP (SATA Interface)

Transaction ID is passed to storage with Read/Write command
Add Commit/Abort command

Update P1, P2, ..., Pn, Commit/Abort
. . |
Application sqLite
\ " File System Interface Read(Pi), Write(Pi), fsync, ioctl(abort) | |
File System
___ fen s
i Storage Interface Read(Ti, Pi), Write (Ti, Commit(Ti), E
| Pi}; Abort(Ti}
Page Mapping T ti |
K Table (L2P) \ [el

Traditional FTL p.l

X-FTL T R
Page Mapping Table (X-L2P)
ea
LPN | PPN /-\ TID | LPN | PPNnew | status
: ; : : : Commit/
Propagation - X
with Garbage : ‘\: at commit TI P.1 \\ Active
. . . N .
Collection Pn | | J — e
\‘ \ : : : \\

1|

=]

=
o
N
o
S
o
=

N
N
o

L) L)
Y Y
Old copy of P1, ..., Pn New copy of P1, ..., Pn
QUEIND
&AM;- SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

" X-FTL: Commit Procedure

. Storage Interface commit(Ti) return success
X-L2P L2P
1. Change the status of [TID |LPN|PPNnew Status / \ LITN PI?N
Ti’s entries in X-L2P : : : : P‘1
table to Committed. | Ti | p1 ~ contBtted 4. Remap LPNs updated _
by Ti with new PPNs Pn
Ti | Pn AL Committed :
DRAM
3. Update the location of X-L2P X-L2P
2. Flush X-L2P table to table in flash meta-block Adrdress
new location in flash
A ARSI R NIRRT e A A
X-L2P
X-L2P Table (new) === At
Flash Chips —
X-L2P Table (old) &~~~
%ﬁ-&x@j SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

ransactional Atomicity in X- FTL

fsync count Write count

3 fsyncs per tx 1 page write
RBJ - 2 syncs for journal - 2 page writes
- 1sync fordb
1 per tx and 1 per checkpoint 1 page write
WAL - 1 sync for journal - 2 page writes
- 1sync for db when checkpoint
- 1 per tx 1 page write
b - 1sync fordb - 1 page write
Transaction commit
fepmmoi Qb fite
Storage '

gy SNU COMPUTER SCIENCE & ENGINEERING

Two New FTLs : X-FTL and VET, Bongki Moon

/ ™
- Performance Evaluation

* Evaluation setup
e OpenSSD development platform :
« MLC NAND : Samsung K9gLCGo8U1M
- Page size : 8KB, Block : 128 pages
 87.5 MHz ARM, 96KB SRAM, 64MB DRAM
e Linux ext4 file system (kernel 3.5.2)
 Intel core i7-860 2.8GHz and 2GB DDR3
e SQLite 3.7.10
* Workloads
e Synthetic
« TPC-H partsupply table, random update, adjust transaction length

e Android smartphone
« SQL trace using Android emulator, RL bench, Gmail, Facebook, web browser

e Database
« TPC-C (DBT2), read intensive, TPC-C original
e File system benchmark
« Flexible I/O(F10), random write, adjust fsync frequency

4

D

4y SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

35L&

o
b

@&.«.{

http://www.openssd-project.org/

P ... et

Synthetic Workload

* TPC-H partsupply table (60,000 tuples, 220 bytes tuple)

* Random update, 1-20 page updated by a transaction

600 350 -

ul
o
o

Execution time (sec)
w
o
o

of updated pages per transaction

L\‘g"\’

g%& SNU COMPUTER SCIENCE & ENGINEERING

300 -

250 -

200 -

150 -

100 -

50 -

Write count (x1,000)

289

& RBJ

E WAL
X-FTL

203

30% 50% 70%
GC Valid Page Ratio

Two New FTLs : X-FTL and VET, Bongki Moon

~~Android Workloads

90

WAL /=

a0 | XFTL ==

—H

70

60

B
.

50

40

Elapsed time (sec)

30

H

H

HH

H

RL Benchmark Gmail Facebook WebBrowser

Figure 7: Smartphone Workload Performance

4

AR

f
Pl
%

3 } SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

N

4

Conclusion
X-FTL: Transactional FTL for SQLite databases

e Offload the transactional atomicity semantics from
SQLite to flash storage by leveraging the copy-on-write
strategy of modern SSDs.

e Achieve the transactional atomicity almost for free
eliminating redundant writes by 50%.

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Two New FTLs : X-FTL and VET, Bongki Moon

Motivation: Traditional Mapping Schemes

Page mapping
e Highly flexible due to the size of granularity (page)

e As the capacity of flash memory grows, the mapping table
requires more space

Block mapping
e Smaller mapping table size
 Less flexible and impractical

\

Both page and block mappings have limitations

TS

L4
.} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

@‘5« F"%

—
Extent-Based Mapping (1)

I/0O request consists of a logical start address and the
number of sectors to read or write

Treat a given I/O request as an extent which serves as
the basic mapping unit
e Store extents in the mapping table as a whole unit

e The degree of granularity changes determined by each
individual write request

¥4
y

%3

/‘*"-bxs.l-

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extent-Based Mapping (2)

Upon a write request:

e Create new mapping information if the request writes
into a clean logical area

e Update existing mapping information if the request
overwrites any valid data

Upon a read request:
e Treat the request as an inquiry extent

e Search for all existing extents that overlap the inquiry

extent
Py
ﬁ@ﬂ} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Extent Trie Design

VET is a logical (virtual) trie of binary strings
Each binary string is composed of 0’s, 1’s, and *’s

Don’t care bits (*’s)
e Only appear at the end of a string

e A string with don't care bits represents an extent whose
length is a power of two

e E.g. 0010**** can be used to represent
 Logical start address: 00100000
- Length: 16

4
'§
‘,’

Py
(el
v,

S TS

} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Ny

'?@
a

Canonical Extent

An extent <s, [> is said to be canonical if the length l is

a power of two and the start address s is a multiple of |

* A canonical extent <s, [> can always be represented by
a single binary string
e Obtained by replacing the least significant zeros of s
with log, [many “*’ bits
e E.g. canonical extent <8, 4> - <000010**>
* Not all extent has a power-of-two length

e Partition an extent to one or more canonical extents

* Serves as a key to identify each node

g%& SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

/

—~

Virtual Trie Example

C D internal node
QXHH*D : leat node
/ \ .

h: <OxxxXXxXx>

. stored extent
G 1 XXXX}EXD

@ 1 OXXXX}D @ 1 lxxxﬁiﬁg

@1 OOX?@E@ 903&3@&%3? 0: <1 11xxxxx>

2: <1000xxxx>

el

/

\63

@11003@9{9@<11013&D
) /A

TR BR A A

k: <11001xxx> n: <11010xxx>

el = {<Q******x%5 1000%***>) \ /
e2 e2 = {<11001***>, <11010***>}

ST 4
'l’)ﬁ'%

iy
By

4
N :
Pl

SNU COMPUTER SCIENCE & ENGINEERING

Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Trie Design

Only a leaf node can have an extent
 Internal node just serves as a helper

VET is a virtual trie, but it physically stores canonical
extents in a hash table

vid
%

@‘{“f" _y

B

¢ SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Update for Write Request (1)

Inserting an extent:
e Locate any existing extents overlapping the given extent

e If overlaps are found, reinsert the existing extents
updated by the overlap and delete outdated extents

e Add the given extent

LIS (Linear Insertion Scheme):

e VET creates all of a given extent’s ancestor nodes and
adds the canonical extent itself to the virtual trie

7

3’

fﬁ/
2)
.,

TESN
(2]

} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

R

Algorithm: Update for Write Request (2)

Deleting an extent example (partial invalidation):
e Extent e4 =<1100100*> arrives at the trie
e Since e4 overlaps e2 = {<11001***>, <11010***>},
e2 is decomposed into e4 and e5

- n: <11010xxx>

r: <110011xx>

/ qg: <1100100x>| | r: <1100101x> \

ed es5

ety
3 1’?‘%
iy
A

l4
%ﬁﬁﬁ SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Search for Read Requests

Perform a binary search against the nodes

Search starts at the mid point of the root-to-bottom
path (replace the second half of the string with “*’ bits)

Lookup succeeds:

e Match found in a leaf node: terminate the search

e Match found in an internal node: continue on the lower

half (less * bits)
Lookup fails:

e Continue by searching upwards (more * bits)

‘f“:\o‘
&J@%?. SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

<l

SR

Search for Read Request Example
Read request = 11001100

1%t search key = <1100****>
2"d search key = <110011**> /\

« »
- - up’ path
(match found in an internal =
in case of
node) .
> lookup fail
3 search key = <11001***>
(lookup failed) i
/- \ > path
‘ in case of
lookup
success
K55S
ﬁ@ﬂ} SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Optimization - Binary Insertion Scheme

Some ancestors for a canonical extent are not used for
the binary search

Add only an indispensable internal node(s)

* Less time and memory for inserting an extent

Improvements on LIS in terms of memory usage and
processing time

b <Oxxxxxxx>

\
0: <l 1 Ixxexxx>
\ /
k: <11001xxx> | | n: <11010xxx>
%ﬁ@;{ﬂ_} SNU COMPUTER SCIENCE & ENGINEERING

Two New FTLs : X-FTL and VET, Bongki Moon

VET used much less
memory than page
mapping table (PMT)
or hybrid mapping
table (HMT)

finance: OLTP

homes, wdev: MS
exchange servers

wsf: web surfing

Memory Overhead Comparison
700 l
PMT
HMT Ea5s
7 S0l VET s
S 500
g
= 400
=
= 00 .
E
3 0
>
100 |
: 5 , -
finance homes wdev wst

ly

o8

ffﬁ/
)
.

(085
{2

b

} SNU COMPUTER SCIENCE & ENGINEERING

Two New FTLs : X-FTL and VET, Bongki Moon

Scalability Test

1000: |
HMT]
g | VET- — . | Asthespacegot
100, / | larger, the traditional
;ﬁ Ejf Xx""/ | schemes suffered
E 4 | from enormous
0y | memory overhead
g »~ -7 1 whileVET remained
‘ | flat
: 200 400 600 300 1000

Flash Memory Device Capacity (GB)

4

[~ =)

S

5

53
B
ﬁL&Qj SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

=

ST 4
3 .Lﬁ%

However, ...

Updating and retrieving mapping information takes
more time than PMT.

Need further optimization for the overhead.

4y SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

