
SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Sang-Won Lee
Info & Communication Engineering

Sungkyunkwan University

Bongki Moon
Computer Science & Engineering

Seoul National University

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

SQLite
 SQLite is the standard database for smartphones

 Google Android, Apple iOS

 Almost every apps uses SQLite

 Why SQLite?

 Development productivity

 Solid transactional support

 Lightweight runtime footprint

 SQLite takes a simpler but costlier journaling
approach to transactional atomicity

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

SQLite Journaling
 Two journaling modes in SQLite

 Rollback journal mode (RBJ)

 Write ahead logging (WAL) (≠ Aries-style physiological WAL)

 SQLite journaling mode is the main cause of slow performance
in smartphone applications
 Kim [USENIX FAST12], Lee [ACM EMSOFT 12]
 70% of all write requests are from SQLite and mostly random

 eMMC flash card is the default storage in smartphones

• SQLite optimization is the practical and critical
problem

• We propose a transactional FTL for SQLite, X-FTL

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Overview

 Identify a performance problem in SQLite and its causes

 Develop new solution for flash-aware atomic propagation
 Implement X-FTL using OpenSSD platform

 Extend the storage interface for transactional atomicity

 Demonstrate SQLite and ext4 file system can benefit from X-FTL
with only minimal changes in their code

 Show that 2x speedup can be achieved in SQLite

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Transactional Atomicity in SQLite

 A transaction updates one or more pages

 {P1, ..., Pn}

 Steal and force policies are taken in SQLite

 Uncommitted changes can be propagated

 Atomic write of multiple pages may not be enough

 Atomic propagation of updated page(s) by TXs is
crucial for commit, abort, and recovery in SQLite

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Ex) Two pages (P1,P2) are updated
 Transactional atomicity is all or nothing

 Force policy need write both pages at commit (ALL)
 Steal policy allows overwriting P1 prior to commit, so undoing

P1’s write may be necessary upon abort (NOTHING)
 Recovery from crash checks whether both pages are successfully

written, and if not, need to undo (ALL or NOTHING)

RAM

P1_oldStorage P2_old

P1_oldP1_new P2_oldP2_new
Transaction commit

Transaction abort

Recovery from crash

P1_new P2_new

Steal
need to undo P1’s write

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Journaling in SQLite
 Two journal modes

 Rollback journal (RBJ, default) and Write Ahead Logging (WAL)

 Why SQLite’s own journaling modes, instead of file system
journaling?
 Portability : every file system does not support journaling
 Steal policy semantics

RAM P1_new P2_new

P1_old
Storage

P2_old Journal File
(Rollback/WAL)

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Rollback Journal
 Rollback Journal (RBJ)

 Old page images are backed up in RBJ file for undo
 RBJ file is deleted at commit time

 Transaction commit is regarded as success only after RBJ file is deleted

 Run-time overhead
 RBJ file creation/deletion
 3 fsync() operations per transaction
 Two writes per each update page
 A logical update can cause

 22 physical page writes [Lee and Won 12]

RAM

P1_old
Storage

P2_old

RBJ file (per TX)

before Update

P1_old P2_oldP1_new P2_new Transaction
Commit

2 fsync()s RBJ filefsync() DB file

Journal file is deleted

Rollback Mode

Database File Rollback File

P1_old

TX Begin

P1_new

File Creation

Pn_old

Pn_new

Write(P1)
...

Write(Pn)

Commit

File Deletion

fsync()

Journal
Header

fsync()

fsync()

- TX Completion -

...

...

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Write Ahead Logging
• Write Ahead Logging (WAL)

 Recently introduced, and better performance than RBJ
 WAL file is reused and shared by many transactions
 New page images are appended to WAL file for redo
 Check-point when it becomes full
 No file creation/deletion overhead
 less frequent fsync()
 But, 2X writes per each updated page

RAM

P1_old
Storage

P2_old

WAL file

P1_old P2_oldP1_new P2_new Transaction
Commit

FULLCheck point

P1_new P2_new

Commit Donefsync() WAL filefsync() DB file

WAL Mode

Database File WAL File

P1_new

Pn_new

fsync()

- TX Completion -

P1

Pn

WAL File
full

fsync()

...
...

...

... Checkpoint

after Update

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Flash Copy-on-Write
 In-place update is not allowed in flash memory
 FTLs take Copy-on-Write (CoW) strategy

 Both old and new copy of a page co-exist

 But, current FTLs change L2P address mapping at the granularity of
page, not a set of pages
 Can not support atomic propagation of multiple pages

TX’s update set = {P1, P2}

P1 ... P2 Pn

Page Mapping
Table

Flash Chips Old copy of P1, … , Pn

LPN PPN

... ...

P1

P2

... ...

Pn

... ...

P1 P2

P1  New Page
P2 Old Page

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

CoW and Shadow Paging
 CoW strategy provides an opportunity for transactional atomicity
 What if FTL can support atomic remapping of multiple page

updates by a transaction?
 FTL need to provide transactional interface to the upper layer
 For undo, old pages should be exempt from GC until TX commit

TX’s update set = {P1, P2, ..., Pn}

P1 ... P2 Pn

New copy of P1, … , Pn

Page Mapping
Table

Flash Chips

Old copy of P1, … , Pn

LPN PPN

... ...

P1

... ...

Pn

... ... Old mapping
New mapping

P1 P2 Pn

Atomic remapping!!

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Architecture
 Transactional mapping table : X-L2P table

 Page mapping table : L2P table (original FTL)
 Transaction ID, Logical Page No, Physical Page No(new), Status

 Garbage collection
 Prevent active transaction pages from GC
 Only pages invalidated by committed transactions

 Atomic propagation of mapping information at commit
 Atomic remapping of committed entries in X-L2P table to L2P table

-

P1

New copy of P1, … , Pn

Propagation
at commit

TID

Transactional
Page Mapping Table (X-L2P)

LPN PPNnew

: :

Ti P1

: :

Ti Pn

Page Mapping
Table (L2P)

LPN PPN

: :

P1

: :

Pn

: :

Read(Ti, Pi) , Write (Ti, Pi), Commit(Ti),
Abort(Ti)

Storage Interface

P2 Pn P1 P2 Pn

Old copy of P1, … , Pn

X-FTL

Recovery

Commit/
Abort

: :

Status

:

Active

:

Active

:

Write/
Read

Traditional FTL
with Garbage
Collection

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extended API (SATA Interface)
 Transaction ID is passed to storage with Read/Write command

 Add Commit/Abort command

-
File System

-

Update P1, P2, … , Pn, Commit/Abort

SQLiteApplication

P1

New copy of P1, … , Pn

Propagation
at commit

TID

Transactional
Page Mapping Table (X-L2P)

LPN PPNnew

: :

Ti P1

: :

Ti Pn

Page Mapping
Table (L2P)

LPN PPN

: :

P1

: :

Pn

: :

Read(Pi), Write(Pi),

Commit(Ti),
Abort(Ti)

Storage Interface

P2 Pn P1 P2 Pn

Old copy of P1, … , Pn

X-FTL

Recovery

Commit/
Abort

: :

Status

:

Active

:

Active

:

Write/
Read

File System Interface

Traditional FTL
with Garbage
Collection

Read(Ti, Pi) , Write (Ti,
Pi),

fsync, ioctl(abort)

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

X-FTL: Commit Procedure

Flash Chips

DRAM

commit(Ti)

1. Change the status of
Ti’s entries in X-L2P
table to Committed.

X-L2P Table (new)

2. Flush X-L2P table to
new location in flash

X-L2P

return success

3. Update the location of X-L2P
table in flash meta-block

X-L2P
Address

X-L2P Table (old)

X-L2P
Address

L2P

Storage Interface

4. Remap LPNs updated
by Ti with new PPNs

TID LPN PPNnew Status

: : : :

Ti P1 .. Active

: : : :

Ti Pn .. Active

: : : :

LPN PPN
: :

P1 ..
: :

Pn ..
: :

Committed

Committed

X-L2P
Address

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Transactional Atomicity in X-FTL

RAM

P1_old
Storage
with X-FTL P2_old

P1_oldP1_new P2_oldP2_new
Transaction commit

fsync to DB fileCommit done

fsync count Write count

RBJ
3 fsyncs per tx
- 2 syncs for journal
- 1 sync for db

1 page write
 2 page writes

WAL
1 per tx and 1 per checkpoint
- 1 sync for journal
- 1 sync for db when checkpoint

1 page write
 2 page writes

X-FTL
1 per tx
- 1 sync for db

1 page write
 1 page write

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Performance Evaluation
 Evaluation setup

 OpenSSD development platform :
 MLC NAND : Samsung K9LCG08U1M

 Page size : 8KB, Block : 128 pages

 87.5 MHz ARM, 96KB SRAM, 64MB DRAM

 Linux ext4 file system (kernel 3.5.2)
 Intel core i7-860 2.8GHz and 2GB DDR3
 SQLite 3.7.10

 Workloads
 Synthetic

 TPC-H partsupply table, random update, adjust transaction length

 Android smartphone
 SQL trace using Android emulator, RL bench, Gmail, Facebook, web browser

 Database
 TPC-C (DBT2), read intensive, TPC-C original

 File system benchmark
 Flexible I/O(FIO), random write, adjust fsync frequency

http://www.openssd-project.org

http://www.openssd-project.org/

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Synthetic Workload
 TPC-H partsupply table (60,000 tuples, 220 bytes tuple)

 Random update, 1-20 page updated by a transaction

0

100

200

300

400

500

600

0 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

of updated pages per transaction

RBJ

WAL

X-FTL

67%

91%

203

244

289

63

93 94

31 33 40

0

50

100

150

200

250

300

350

30% 50% 70%

천

GC Valid Page Ratio

Write count (x1,000)
RBJ

WAL

X-FTL

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Android Workloads

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Conclusion
 X-FTL: Transactional FTL for SQLite databases

 Offload the transactional atomicity semantics from
SQLite to flash storage by leveraging the copy-on-write
strategy of modern SSDs.

 Achieve the transactional atomicity almost for free
eliminating redundant writes by 50%.

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Bongki Moon
Computer Science & Engineering

Seoul National University

Alon Efrat
Computer Science

University of Arizona

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Motivation: Traditional Mapping Schemes
 Page mapping

 Highly flexible due to the size of granularity (page)

 As the capacity of flash memory grows, the mapping table
requires more space

 Block mapping
 Smaller mapping table size

 Less flexible and impractical

Both page and block mappings have limitations

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extent-Based Mapping (1)
 I/O request consists of a logical start address and the

number of sectors to read or write

 Treat a given I/O request as an extent which serves as
the basic mapping unit

 Store extents in the mapping table as a whole unit

 The degree of granularity changes determined by each

individual write request

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Extent-Based Mapping (2)
 Upon a write request:

 Create new mapping information if the request writes
into a clean logical area

 Update existing mapping information if the request
overwrites any valid data

 Upon a read request:

 Treat the request as an inquiry extent

 Search for all existing extents that overlap the inquiry
extent

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Extent Trie Design
 VET is a logical (virtual) trie of binary strings

 Each binary string is composed of 0’s, 1’s, and *’s

 Don’t care bits (*’s)
 Only appear at the end of a string

 A string with don’t care bits represents an extent whose
length is a power of two

 E.g. 0010**** can be used to represent
 Logical start address: 00100000

 Length: 16

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Canonical Extent

 A canonical extent <s, l> can always be represented by
a single binary string

 Obtained by replacing the least significant zeros of s
with 𝑙𝑜𝑔2 l many ‘*’ bits

 E.g. canonical extent <8, 4>  <000010**>

 Not all extent has a power-of-two length

 Partition an extent to one or more canonical extents

 Serves as a key to identify each node

An extent <s, l> is said to be canonical if the length l is
a power of two and the start address s is a multiple of l

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Trie Example

e1 = {<0*******>, <1000****>}
e2 = {<11001***>, <11010***>}

e3 = {<111*****>}

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Virtual Trie Design
 Only a leaf node can have an extent

 Internal node just serves as a helper

 VET is a virtual trie, but it physically stores canonical
extents in a hash table

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Update for Write Request (1)
 Inserting an extent:

 Locate any existing extents overlapping the given extent

 If overlaps are found, reinsert the existing extents
updated by the overlap and delete outdated extents

 Add the given extent

 LIS (Linear Insertion Scheme):

 VET creates all of a given extent’s ancestor nodes and
adds the canonical extent itself to the virtual trie

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Update for Write Request (2)
 Deleting an extent example (partial invalidation):

 Extent e4 = <1100100*> arrives at the trie

 Since e4 overlaps e2 = {<11001***>, <11010***>},

e2 is decomposed into e4 and e5

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Algorithm: Search for Read Requests
 Perform a binary search against the nodes

 Search starts at the mid point of the root-to-bottom
path (replace the second half of the string with ‘*’ bits)

 Lookup succeeds:

 Match found in a leaf node: terminate the search

 Match found in an internal node: continue on the lower
half (less * bits)

 Lookup fails:

 Continue by searching upwards (more * bits)

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Search for Read Request Example
 Read request = 11001100

 1st search key = <1100****>

 2nd search key = <110011**>
(match found in an internal
node)

 3rd search key = <11001***>
(lookup failed)

“up” path
in case of
lookup fail

“down”
path
in case of
lookup
success

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Optimization - Binary Insertion Scheme
 Some ancestors for a canonical extent are not used for

the binary search

 Add only an indispensable internal node(s)

 Less time and memory for inserting an extent

 Improvements on LIS in terms of memory usage and
processing time

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Memory Overhead Comparison

VET used much less
memory than page
mapping table (PMT)
or hybrid mapping
table (HMT)

 finance: OLTP

 homes, wdev: MS
exchange servers

 wsf: web surfing

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

Scalability Test

As the space got
larger, the traditional
schemes suffered
from enormous
memory overhead

while VET remained
flat

SNU COMPUTER SCIENCE & ENGINEERING Two New FTLs : X-FTL and VET, Bongki Moon

However, …
 Updating and retrieving mapping information takes

more time than PMT.

 Need further optimization for the overhead.

