HIL: FTL design framework with
provably-correct crash recovery

Eyee Hyun Nam,
Storage Tech. Lab. SK Telecom

(In cooperation with Memory & Storage Architecture Lab. SNU)

Introduction

Motivation

HIL Framework

Correctness Verification

Conclusion

Introduction

= Flash memory is ubiquitous

[Source: storagelook.com]

Flash Storage Device

= Provides an interface identical to a block device, but uses flash
memory as a storage medium

TN . Host system

Low power \WESSIVE
consumption parallelism

R ~ High

High 4D, FESlai to
density ~ Sy, NE Al

Flash memory
controller

NAND Flash
memory chips

A ~High
Low access resistance
latency to shock

Flash storage device
Small form

factor

Recent Trend & Our Goal

Characteristics
Performance
-Longer latency
Reliability

-Retention/Endurance
-Disturbance/Interference

-Sibling page problem

Abundant Parallelisms

Host system and FTL
-Multi-core/Multi-threaded SW
Flash memory

-Multiple flash buses/chips
Host interface

-NCQ/TCQ/...

[Requirement]

Fast & Reliable Storage
Time to market, cost, & reusability

[Goal]

Maximal exploitation of diverse parallelisms
Provably correct flash management SW

Modular / extensible / compositional architecture
Flexible trade-off between performance and cost

Increasing Diversity

Applications

-File system/DB/Virtual Memory/...

Flash memory

-ONFI/Toggle/HLnand

FTL
-Page-mapped/Block-mapped/Hybrid-mapped
Host interface

-SATA/PCle/UFS/eMMC

Key Enabling Technologies

"HW/SW co-designed/co-optimized system architecture
»Packet-based interfaces

- Front-end

Host

Host
interface

Da

*Nam, E.H., Kim, S.J., Eom, H., and Min, S.L., “Ozone (O3): An Out-of-order Flash Memory Controller Architecture”, IEEE Transactions on Computers, vol. 60, no.5, pp.
653-666, Oct. 2011.

*Yun, J. H., “X-BMS: A Provably-correct Bad Block Management Scheme for Flash Memory Based Storage Systems”, Ph.D. Dissertation, 2011, SNU.
Yun,J.H, Yoon,J.H, Nam, E.H, Min, S.L., "An Abstract Fault Model for NAND Flash Memory, IEEE Embedded Systems Letters, vol.4, no.4, pp.86-89, Dec. 2012.
*Y.J. Sung, “Formal verification of a compositional FTL design framework”, Ph.D. Dissertation, 2013, SNU.

*H.S. Kim., “Design and implementation of a parallelized bad block management scheme™, Ph.D. Dissertation, 2013, SNU.

Motivation (1)

= “Flash storage is now a computer system!”

[Traditional storage system]

(mostly)
user data

User data
. Multi-core processor
FTL metadata remaoni
~Mapping Info - Garbazz c?)llection
- Block info _
- Checkpoint - Wear-leveling

- Write buffering

- Host command queuing
- Interleaving (RAID)

- Crash recovery

Single-core processor
- buffering, 1/0 scheduling

[Flash storage system]

Motivation (1)

= Plethora of FTLs

HFTL
SAST SETL MS FTL BPLRU
BFTL AFTL FAST LazyFTL
KAST
CNFTL DFTL
Chameleon

LAST MNFTL

super-block scheme CFTL
Log block scheme

GFTL u-FTL JFTL JETL
Replacement block scheme
Hydra FTL ania pre oF
YanusFTL

Reconfigurable FTL
........... and so on

WAFTL UFTL

NoO one relieves our worries...

@

[List of questions]
How do they do
- Mapping?
- Wear-leveling?
- Garbage collection?
- Write-buffering?

- Crash recovery?

Motivation (2)

= “Crash recovery is not only a system-software issue!”

[File System / DBMS] [Crash

Recovery

Possibly “Failure of the
entire storage system!”

[Storage \ [FTL meta datq _ _ \
meta data (Mapping, Physical block information,)
User data User data

[Traditional storage system] [Flash storage system]

Motivation (2)

= Challenges of crash recovery

= Asynchronous
= Nested crash

= Non-atomic page programming

= Sibling page problem

Flash memory page

1111....11111

Crash while
programming data

()

Crash recovery of current FTLs are based on the
assumption of “atomic programming”

--
“‘

1111....11111

or

o,
‘e

.

--
*,
o,

“Clean” state (nothing)

“Programmed” state (all)

-
*
-
--

“Unreliable” state

Motivation (3)

= “Many-core is not special any more inside SSDs”

Single-threaded FTL Multi-threaded FTL

HIL framework

= HIL (Hierarchically Interacting a set of Logs)

= A general FTL design framework that systematically solves crash
recovery problem with following key aspects.

* (1) Compositional construction of FTLs
* (2) Built-in crash recovery mechanism

* (3) Maximal exploitation of parallelisms

HIL: Compositionality

= “An FTL is built with the composition of Logs”

Flash storage
system (FTL)

Hierarchical [, =
interconnection of Logs
(for each data type) Casting Based
Construction
— VS.
Log 'Xl
mappin
L (mapping) Log
p ¢ (block info) New Functionality =>
Log New frame for FTL
(data)

[HIL approach] [Previous approach]

Log

= A building block of FTLs that provides 1) linear address space
where data can be updated in-place and 2) durability of data

M RE @Fegd)az=2g I534 ¥ (853 A3 8 I RE IR
(install) (install_ack) (nv_grant) (nv_grant_ack) (query) (query_ack)
0
1

-\¢¢ Yo, R Yo t.
| N

Volatile Cache Flash log

Flush
Append-only
Fetch :
I
L] ' ‘Q
.. 'l essssssssssEsssssEsssssEsssssEssssEEesss®
I
Log '
‘Program future list' 2 A=A} 0l &l

Folidl Lo EHA HZ2E =SS

...... €— <

Types of Logs

D-type Log (for user data)

M-type Log (for mapping information)
L-type Log (for liveness information)

C-type Log (for checkpoint information)
W-type Log (for non-volatile write buffering)

Example: A more detailed picture of M-type log

» installed (id, v)

. o . = installed (id, nv)
» install_association (id, (pla, size, 8\))

* nv_grant (id)

Program /read / erase

requests
Flash

= installed (idy, v) interface
. . . * installed (idy, nv)
= install_association (idy, (pla, size, 8t))

* nv_grant (idy)

16

Compositional Construction of an FTL

Interconnection topology
FTL \"|: Diverse mapping scheme
- Block mapping

- Page mapping

- Hybrid mapping

4

= C-type Log
L L N
Pluggable
— S) | Garbage collection policy

I . Wear-leveling policy
I M Buffer mgmt. policy 7

C-type Log
c
M-type Log ()

S .~

IM

D-type Log /"
(D) /

: Read Processing Unit

-

: Write Processing Unit

-
-
"

’
-’
iag
-
-

- Profiler

“Each Log has its own Write buffering scheme
and built-in Crash recovery mechanisni’

: Free block allocator

HIL: Crash Recovery

[Previous Crash

“Last checkpointed” “Logically up-to-date”
Storage state Storage state recoverylk
/ “m .
a4 (PRl |
= = 7 | & =8 [BN ... m u¥ » =
2 = = e
. “ s =¥p
[
[media state after crash]
(1) “Structural (2) “Functlonal recovery” [H”‘ Crash recovery]
' recovery” — -
[- b1 - s
E = E = [
2 = » [
m “ m " E
Removed! Clean start!

HIL: Crash Recovery

= Structural recovery of each Log level

(3) Swap (Checkpoint of new
program-future list)

(1) Scan Read errOrl

s ®
e
o -
.
04 ‘e

Block x “—— Block y “—x— Block z

: Don’t care block

N

Program-future list (2) Copy

HIL: Crash Recovery

= Structural recovery of storage device level
= Top down propagation of checkpoint info.

= Local processing
* ldentifying crash frontier
» Copying valid data and shadowing

= Bottom up update of checkpoint info.
= Atomic commit
= Top down broadcasting of the completion of atomic commit

Top down propagation of checkpoint info

PFL: Program Future list
DCB: Don'’t care block

Top down propagation of checkpoint info

Local processing — lIdentifying crash frontier

Crash frontier Don't care block

Local processing — Copying valid data and shadowing

Local processing — Copying valid data and shadowing

PFL: Program Future list
DCB: Don't care block

X2

PFL: .. 2l |
. .

x1

X0

Bottom up update of checkpoint info

PFL: Program Future list
DCB: Don't care block

Atomic commit

PFL: Program Future list
DCB: Don't care block

Top down broadcasting of the completion of the

Ready to process functional recovery

HIL: Parallelism Exploitation

Thread-level
Parallelism

[HIL framework]

é Log
(mapping Lv. 1)
S

Log . B
) [(Checkpoint)]

2 Log
(mapping Lv. 0)
J

\

2 Log
(data)

Log
‘ (physical i B
block info)
J

_éoo : Thread T : Flash request queue

Flash-level
Parallelism

Flash chip O

T

Flash chip 1

Flash chip 2

m

Flash chip M

[

HIL: Parallelism Exploitation

Multiple streams of flash operations
= Seamless integration with out-of-order flash controller

HIL FTL

Out-of-order
Flash memory controller

U Stream 0 Stream 1
a Stream 2 , Stream 3

*Nam, E.H., Kim, S.J., Eom, H., and Min, S.L., “Ozone (03): An Out-of-order Flash Memory Controller Architecture”, IEEE
Transactions on Computers, vol. 60, no.5, pp. 653-666, Oct. 2011.

Bad block mg

Correctness Verification

[HIL framework]

U Theoretical Verification]

Rules on
- Log interconnection

- Log interface »“Formal Verification

- Structural recovery iy
- Functional recovery of HIL framework

Implementation-level
Verification

- Workload Generator
- Fault (Crash) Generator

- Integrity Checker

- Initial State Modeler

Formal Verification of HIL

[Defining Correctness Criteria] [Theorem proving]
=> Theorem to prove Fori=0, = snsisw,

\ - nv_linky(p, v) became durable before the - Wk (0=k<i-1), nv_link, (p, v) became durable
A Storage System is correct if crash (by rule 5) H before the crash (by rule 3)

H H - nv_linky(p, v) will be read correctly during H - Wk (0=k<i-1), nv_link, (p, v) will be read
read Commaij]d for any Ioglcal page p |s_always structural recovery (by the definition of the correctly during structural recovery (by the
responded with the data value v, which is most durablity of nv_link) definition of the durability of nv_link)
recent data version of the Iogical page p - Ifnv_link, (p, v)is in the crash frontier block, it H - vk (0=k<i-1), If nv_link, (p, v) is in the crash

will eventually be moved to don't care block frontier block, it will eventually be moved to
even with repeated crashes (by the H don't care block even with repeated crashes
idempotence of structural recovery) (by the idempotence of structural recovery)

- Fork=0, nv_link,(p, v) € flash_log, vk (0=k<i-1), nv_link, (p, v) € flash_log,

Therefore, vk (0<k< max(i-1,0)) nv_link(p, v) € flash_log,

[Formal description of HIL framework]

s Rule 1 .l
= 3i(0<i<n), v link (p, v) is removed from the cache; only after (1) v_link.4 (p, v) —
is installed in the cache;, (2) or when it is replaced by v_link; (p, V') where V' is) ;)
more recent data version of the logical page p, (3) or when a crash occurred g - fe=max(i-,0) . I:“"—"""l“’v v
= v_linky.y (p, v) are not removed from cache,, by the condition (1) e ’ nv_link {p, v) :

Structural : o G .
Functional &
M recavery v v_linky{p, v)
= Rule 2 : _ rocovery | (. P
= 3i(0<i<n-1), nvlink (p, v)is removed from redo_set of log i (redo_set) only i \ A : LY =
after nv_link;.., _(p, v) becom'es durable in the Igg i+1 ‘ I == nv_link(p,v) T nv_link,{p, v)
= Redo_set, = NV_set, ,which means that Log n is redone from the start of log during ﬁ |i|
recovery Crash!
v nv_linky{p, v) v nv_linke{p, v} v _Nv_linke(p, v}

*Y.J. Sung, “Formal verification of a compositional FTL design framework”, Ph.D. Dissertation, 2013, SNU.

-
2
)

©
=
=

)
>

C

@)
=

©
)

C

)

=
D

Q.

=

c1

Page-mapped FTL

prototype implementation

HIL

M1

LM

s———

intensive &
various Test
scenarios

More Fault-

oK
ReadiDatanatOX

Fault
Model

&

Fault
frequency

®

[%]
@
3
<=0
OSE
= o
=Sz [85¢ck
9SG 2 | oS
T & E eSS
Crn A~ 0 c ,
= 20 >33
— = ..h
32 =
> co @
=}

Flash memory simulator

In-house prototype
platform

Conclusions

= Thesis statement

“HIL framework heals the Achilles’ heel of flash storage
systems, which is characterized by following key aspects”

« Compositional construction of FTLs
* Built-in Crash Recovery mechanism

« Maximal exploitation of parallelism

HIL
framework

Thank you & Questions ?

