
서울대학교분산시스템연구실

Heon Young	YEOM

Seoul	National	University



서울대학교분산시스템연구실

Response	Time	=
Seek	(10ms)
+	Rotational	Delay	(0.8ms)
+	Transfer	Time

HDD

Flash	Memory

Storage	Class	Memory

PCM
STT‐MRAM

Ozone(O3):	An	out‐of‐order	Flash	memory	Controller	
Architecture,	IEEE	Trans.	On	Computes,	May	2011.

Parallel	Architecture



서울대학교분산시스템연구실

Operating
System

Application

No	modification	to	Software

Replacing	the	h/w	only

No	matter	how	fast	storage	devices	get,	
Software	consistently	would	eat	up	the	extra	speed	!!



서울대학교분산시스템연구실

SSD

OS’s	
Storage	Stack

Application
What	matters	us	!
(Application	throughput)

What	vendors	give	to	us
(Device	throughput)

Different
Performance	
Number!

e.g.)	OCZ	Vertex3(60GB,	SATA3,	EMLC)
Vendor’s	perf.:	60000~85000	(4KB	IOPS)
Fio’s perf:	10000~15000	(4KB	IOPS)



서울대학교분산시스템연구실

Application

OS

Fast	Storage	
Device

read/write mmap

Device	access
(SATA,	PCI‐E,	…)

Page	Cache

File	System

Block	Layer

Device	Drv.

Storage==HDD

0.027	msecs

0.007	msecs
DRAM‐SSD,	4KB	I/O

H/W S/W

0.020	msecs



서울대학교분산시스템연구실

1. Interrupt	Overhead

2. Delayed	Execution

3. Spatial	Merge

4. Disk‐Assumption	
in	I/O	scheduler

[Source	of	Delays]



서울대학교분산시스템연구실

 High‐performance	SSD
 DRAM‐based	SSD	(provided	by	Taejin Infotech)
 7	usecs for	reading/writing	a	4	KB	page
 Peak	device	throughput:	700	MB/s													1.4GB/s
 DDR2	64	GB,	PCI‐Express	type

{Iozone,	16	Thread,	Linux	stack}
Random	Read	=	50	MB/s

<<	Device	Throughput	(700	MB/s)



서울대학교분산시스템연구실

High	Throughput	

Minimizing
Per‐Request	
Latency

Mitigating
Per‐Request	
Latency

Application

Page
Cache

Block I/O
Subsystem

Fast	Device

Cache	miss
Page	
fault



서울대학교분산시스템연구실

 Polling	(vs Interrupt)
 Eliminate	Asynchrony	Delays

 Temporal	Merge	(vs Front	/	Back	merge)
Maximize	Merge	Opportunity	
by	Merging	Non‐Spatial	Blocks

 Multiple	I/O	Paths	(vs Single	I/O	Path)
 Enhancing	background
single	thread	I/O	merge	opportunities



서울대학교분산시스템연구실

0

100

200

300

400

500

600

700

800

Sequential	Read Sequential	Write Random	Read Random	Write

Th
ro
ug
hp
ut
	(M

B/
s)

Original +Polling +Temp.	Merge +Mult.	Paths

이상적인 성능(장비의 한계치)

Misunderstood 
read-ahead context
in filesystemDue to Non-Merge

+23% +45% +215% +240%

All	done	in	PCI	gen1	x4!!!

Speedup



서울대학교분산시스템연구실

 Not	much	gain	after	H/W	upgrades

>=	4KB	
requests

Approx

100%
IOPS

Improvement

2x
PCI‐e

Channel
Bandwidth

0.5KB	
requests

Approx

25%
IOPS

Improvement



서울대학교분산시스템연구실

 Block	Illusion

 Preserving	Latency	while	Batching	I/O
Temporal	Merge
Asynchronous	Merge

Application File	System Block	Driver

I/O	Path

64B 4KB 4KB 4KB

Device

B/W
Waste



서울대학교분산시스템연구실

 Sub‐block/page	I/O:
 Eliminate	B/W	waste

 Pipelined	I/O:
 Pertain	per	block	I/O	completion	after	
merging



서울대학교분산시스템연구실

0

50

100

150

200

250

300

350

400

450

500

Seq.Read Seq.Write Rand.Read Rand.Write

IO
PS
	(x
10
00
)

ddr2,	no	delayed	polling
ddr3,	no	delayed	polling
ddr3,	pipelining

Sub‐Block	I/O I/O	Pipelining

FIO,	512	byte,	16	threadsSub	Block	I/O	Improvement



서울대학교분산시스템연구실

 File	System	Overhead	
&	Page/Buffer	Cache	Overhead
 Sub	page	I/O,	Super	page	I/O	all	limited	by
block	based	File	Systems	&	Page	cache	mgmt.

 Need	I/O	interfaces	not	limited	by	“Blocks”.

 No	Standard	Way	for	Direct	Device	Access
 Low	latency	design	requires	direct	access	to
device	queue	&	and	tags.

 OS	Block	/	SCSI	layer	don’t	provide	this.
 Need	a	generic	I/O	interface	to	provide	
“Direct	Access”.



서울대학교분산시스템연구실



서울대학교분산시스템연구실

 Block	based	H/W,	S/W	is	a	problem!
 Incurs	B/W	overhead
 Incurs	Additional	Overhead

Actual	I/O

Actual	I/O	Larger	Than	Blocks

Bandwidth	Waste
Additional	Transfer	Time

Multiple	block	unit	access.
Metadata	(in‐flight)	allocation.
Multiple	File	System	lookup.

B) Block	Unit	(i.e.,	4KB) Block	Unit	(i.e.,	4KB) Block	Unit	(i.e.,	4KB) Block	Unit	(i.e.,	



서울대학교분산시스템연구실

APP

VFS

Page Caching

File system (e.g. ext2)

Block layer

Device driver

Fast storage device

User 
level

kernel 
level

device

Block	I/F	based	I/O	stack.

H/W:	Yes
Can	eliminate	if		vendor	support	

is	there.
“But	they	ask:	Can	S/W	do	that?”

Block	layer	&	Device	driver:	Yes!
Easy	if	the	H/W	supports	it.

Just	a	matter	of	changing	addressing	
schemes.

VFS,	Page	Cache,	File	System: No!
Definitely	based	on	blocks.

Optimization	based	on	blocks.

Applications:	Yes <<	No
Some	apps	can	live	without	them.
Some	cannot.		But	most	of	them	are	

optimized	based	on	“blocks”



서울대학교분산시스템연구실

APP

VFS

Page Caching

File system (e.g. ext2)

Block layer

Device driver

Fast storage device

APP

File system

Fast storage device

Raw device driver

User 
level

kernel 
level

device

User 
level

Kernel
level

device

Block	I/F	based	I/O	stack. Byte	Addressable	I/O

 Re‐design	an	I/O	path	free	from	blocks.
 Abandon	page	cache:	Doesn’t	help	us	much!
 Fragment	based	FS:	BAFS	(Byte	Addressable	FS)
 Byte	addressable	I/O	driver	&	device
 Synchronous	I/O



서울대학교분산시스템연구실

 VFS,	Page	Cache‐less
 Block	based	page	cache	management	overhead.
 Poor	random	I/O	cache	hit	ratio.
 Just	additional	overhead.	 Let’s	live	without	it.

 BAFS	(Byte	Addressable	File	System)
 Preserve	I/O	size	as	same	as	possible
 Fragment	Based	instead	of	Block	Based

 Byte	Addressable	Raw	I/O	device	driver.
 Proprietary	Device	Driver	for	Low	Latency
 Eliminate	scheduler	overheads
 Other	additional	optimizations	such	as
zero	copy,	batched	I/O,	swapping	queues.



서울대학교분산시스템연구실

 Using	I/O	I/F	not	restricted	to	LBA’s.
 Implemented	as	a	character	device.
 <Command,	Offset,	Request	size>	based	I/O

 Internal	Optimizations

request request request

…Batching I/O

I/O reqeust0 I/O reqeust0 I/O reqeust0

DMA operations
[Batch	I/O]

Raw device driver

User-level file system

No data copy User-level

Kernel-level

[Zero	Copy]

…
.

req0

req1

req2

…
.

req0

req1

req2

…
.

Global_queue0 Global_queue1Global_queue0

enqueue dequeue

[Swapping	Queues]



서울대학교분산시스템연구실

 Double	Hashing	based	Metadata	Mgmt.
Key:	filename(including	path)	/	Value:	inode
 Features	flat	directory	access.

/

a b

000.txt 001.txt 003.txt002.txt

c

005.txt004.txt

<Directory structure>

key Hash function Hash table

Filename0
/a/000.txt

Filename1
/b/003.txt

Filename2
/c/005.txt

13 (inode #)

11 (inode #)

15 (inode #)

…
.

<Hash table for setting and finding inode>

/a/000.txt

/b/003.txt

/c/005.txt

…
.



서울대학교분산시스템연구실

 Managing	data	region
 A	inode manages	data	region	by	using	fragments	in	the	B‐tree
 The	fragments	manitain information	of	data	region	

 Fragments	
 We	use	fragments	for	managing	data	region
 It	can	manage	the	proper	data	region	for	user	requested	size

start

<File0>
Fragment0

Inode0

…..

end start

<File0>
Fragment1

end

…..

Inoden

start

<Filen>
Fragment0

end

….. <Filen>
Fragment1

<Filen>
Fragmentn

…..



서울대학교분산시스템연구실

 Hardware
 CPU:	8	cores	(Intel	Xeon	E5630	2.5GHz)
 RAM:	8GB
 DRAM‐SSD	
 Peak	device	throughput:	700~750MB/s
DDR2	64GB,	PCI‐Express	type

 Software
 Linux	kernel	2.6.32
 FIO	benchmark
 IOZONE	benchmark



서울대학교분산시스템연구실

Layer Functions In/Out Time (us)

VFS
sys_read in 0

do_sync_read in 0.5

FS ext2_readpage in 4.5

BLK
generic_make_request in 8.5

generic_make_request out 11.5

SCSI
scsi_request_fn in 13.5

scsi_request_fn out 20.5

BLK io_schedule in 22.5

DEV
SSD_intr in HL+22.5

SSD_intr out HL+31.5

BLK

blk_done_softirq in HL+40.5

bio_endio in HL+43.5

bio_endio out HL+45.5

SCSI
scsi_run_queue in HL+49.5

scsi_run_queue out HL+50.5

BLK
blk_done_softirq out HL+51.5

io_schedule out HL+55.5

FS ext2_readpage out HL+57.5

VFS
do_sync_read out HL+60.5

sys_read out HL+60.8

Total time : 67.8us

The reduction for I/O latency by about 3 times 



서울대학교분산시스템연구실26

Sequential Read – I/O bandwidth and latency

Sequential Write– I/O bandwidth and latency



서울대학교분산시스템연구실27

Random Read – I/O bandwidth and latency

Random Write– I/O bandwidth and latency



서울대학교분산시스템연구실28

Sequential Read and Write– I/O bandwidth

Random Read and Write– I/O bandwidth



서울대학교분산시스템연구실



서울대학교분산시스템연구실

 Synchronous	I/O	is	not	the	only	I/O	path
 We	have	buffered	I/O,	mmap I/O,	
page	swap	I/O,	Asyncronous I/O	(aio)…

 We	can’t	live	without	blocks…
 Userespace: So	many	previous	applications	are	based	
on	block	I/O.

 Kernelspace: There	are	more	OS	S/W	based	on	blocks	
or	even	chunks.	(RAID,	Volume	mgr &	etc…)

 Standardized	Block	Based	I/O	Controllers
 Block	based	controllers	&	devces are	already	dominant.
 But	they	also	experience	S/W	limitations…



서울대학교분산시스템연구실

submit_bio(bio)

scsi_queue_command(cmd,	callback)

bio‐>bi_endio
(callback)Block	Layer

SCSI	Layer

Low	Level
Device	Driver Native	Queue,	I/O	Tags,	Commands,	DMA	Buffers

NVRAM	I/O
Optimizations	Require
Direct	Device	Access

Direct	Device	Access
Blocked	by	I/F

Direct	Device	Access
Blocked	by	I/F

H/W	(Host	Controller)

i.e.	Can	we	implement	polling	without	
proprietary	low	level	device	driver	access?

AHCI(SATA),	SAS(SCSI),	NVM‐e,	SCSI‐e,	Proprietary	PCI‐e	



서울대학교분산시스템연구실

 queue‐>make_request()	is	not	enough!
 Redundant	proprietary	device	driver	code	
infecting	upper	layers.	 Just	a	workaround!

 Monolithic	I/O	strategy	+	Device	Driver	code.
 VFS,	Page	cache,	FileSystem,	User	App	Access.

 I/O	optimization	is	not	restricted	to	
block	I/O	layer	&	device	drivers.

 A	standard	way	for	the	upper	layers	to	‘see’ the	device	
is	necessary.

 Standard	I/F	to	provide	a	way	to	‘standardize’ I/O	opti
mizations	to	the	rest	of	the OS.



서울대학교분산시스템연구실

 HIOPS‐Hardware	Abstract	Layer
 Expand	NVRAM	optimizations	beyond	the	
block	I/O	layer.

 Provides	NVRAM	H/W	Low	Latency	
Direct	Access	to	upper	layers.

 Expand	the	use	of	H/W	direct	access	API
We	can	apply	various	optimizations	based
on	these	Low	Latency	Direct	Access	Operations.

 Apply	these	optimizations	to	the	upper	layers.
(i.e.	page	cache,	swap	I/O,	RAID,	userspace API)



서울대학교분산시스템연구실

 “Fine	Grained	Device	Abstractions”
 Buffers,	Commands,	Queues,	Tags	and	Corresponding	Operations.

 Define	‘direct’	operations	to	these	device	
abstractions.
 i.e. Is	I/O	on	tag	pending?
 i.e.	Do	we	have	free	I/O	slots(tags)?
 i.e.	Map	a	command	or	commands	to	a	tag

 Serves	as	a	boundary	for	device	driver	issues.
 Isolates	software	issues	from	generic	OS	parts.

 No	overhead:	Just	a	function	pointer	call.
 i.e.	VFS	layer	implementation



서울대학교분산시스템연구실

Controller:	“ctrl”

IRQ:	“irq”IRQ:	“irq”IRQ:	“irq”

Device:	“dev”

I/O	Strategy:	“iostrat”

HIOPS	HAL

Request	Available	I/O	Tag

Low	Level	Device	Driver	(Controller	Driver)

Build	and	Issue	command
Check	for	completion

I/O	Strategy	specific
Queue	structure

I/O	request	(block	/	fragment)	from	upper	layers
Ex>	Block	interface	(submit_bio(bio))

Completion	Up‐calls

Direct	HAL	Calls
From	Upper
Layers

Queue,	Tags,	Commands

Interrupt	based	upcalls

Query	“Capabilities”



서울대학교분산시스템연구실

Controller:	“ctrl”

IRQ:	“irq”IRQ:	“irq”IRQ:	“irq”

Device:	“dev”
queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Device:	“dev”
queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Device:	“dev”
queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

queue:	“ioqueue”
Queue	entries(tags):	“iotag”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Command:	“cmd
”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

Queue	entries(tags):	“iotag”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”
Command:	“cmd

”

AHCI	HBA Tags
NCQ	“Queue”

Tags
NCQ	“Queue”

Tags
NCQ	“Queue”

Devices	connected	to	ports

ATA	
Commands

NVM‐e	HBA

NVM‐e	“Ring	buffer	Queue”

Devices	as	PCI	functions

Q1

Q2

Cmpl.	Q

Queue	
Entries

HIOPS	H/W	Abstraction

JSM	Altera	
FPGA

PCI‐e	JSM	Device Single	I/O	
Slot	(tag)

Multiple	Buffer
Entries

Multiple	iRQ Lines
If	using	MSI‐x

Multiple	iRQ Lines
If	using	MSI‐x

Single	line	IRQ

AHCI:

NVM‐e

JSM:



서울대학교분산시스템연구실

 A	user	level	application	polling	based	
synchronous	I/O	(An	extreme	case)

Mmap buffer Ioctl() Ioctl()

Build	up	I/O	command
Signal	O/S	to	request	I/O

Request	tags

HIOPS	HAL

Call	check	for	completions.
(repeat	until	we	have…)

Ioctl() Mmap buffer

Process	I/O	tags	finished.

Check	tag	completions Detach	command	&
post	process

Allocate	command
Attach	cmd+tag

[Userspace]

[Kernelspace]



서울대학교분산시스템연구실

 Write	buffer	I/O	incurs	small	I/O	problem.
How	about	batching	them	in	one	go?
Batch	dirty	blocks	on	one	device	round	trip…

Request	multiple I/O	tags

HIOPS	HAL

Check	tag	completions Detach	command	&
post	process

Allocate	multiple	command
Attach	multiple	cmd+tag

Page	cache	flush	thread	flushing	dirty	pages.

Flush	thread	collects	dirty	pages.

I/O	Device	Context



서울대학교분산시스템연구실

Block	I/F
Linux	Block	I/O	based	I/O	Strategies
Ext4	file	system	cloned	from	3.2.40

VFS	cloned	from	3.2.40

Userspace

Linux	block	I/O
Request	Queue
I/O	Strategy

Optimized	I/O
Strategy

HIOPS	HAL
Ram	Device
(Emulation)
HIOPS	Low	Level	Device	Drivers

AHCI	
Driver

SAS	Driver
(LSI	Megaraid)

Vendor	
Specific	Driver

Block‐less	I/O
Strategy

Block‐less	I/F

Block‐less
File	System

Direct	API	Calls
Direct	access	to	HAL
Objects
(I/O	Strategy,	Controll
Device,	Queue,	Tags…)



서울대학교분산시스템연구실

Block	I/F
Linux	Block	I/O	based	I/O	Strategies
Ext4	file	system	cloned	from	3.2.40

VFS	cloned	from	3.2.40

Userspace

Linux	block	I/O
Request	Queue
I/O	Strategy

Optimized	I/O
Strategy

HIOPS	HAL
Ram	Device
(Emulation)
HIOPS	Low	Level	Device	Drivers

AHCI	
Driver

SAS	Driver
(LSI	Megaraid)

Vendor	
Specific	Driver

Block‐less	I/O
Strategy

Block‐less	I/F

Block‐less
File	System

Direct	API	Calls
Direct	access	to	HAL
Objects
(I/O	Strategy,	Controll
Device,	Queue,	Tags…)



서울대학교분산시스템연구실

 Every	element	of	OS	should	be	revisited	if	an	
application	wants	to	benefit	from	fast	storage	
devices.
 Our	experiences	prove	it.
Block	I/O	subsystem,	VM	subsystem	(mmio,	page	cache),	
Networked	storage	stack

 Faster	devices	require	changes	to	how	we
do	I/O.		New	S/W,	H/W	Interfaces	should	be	
considered.
 Block‐less	I/O
 Block‐full	I/O


