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- New NVRAM Storage Systems
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Introduction
- Ordinary Practice to Use SSD

No modification to Software

Application
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e No matter how fast storage devices get,

Software consistently would eat up the extra speed !!

Replacing the h/w only




Motivation

Application
............................... » What matters us !
(Application throughput)

Different
Performance
Number!

Storage

What vendors give to us

............................. » (Device throughput)
ﬁ e.g.) OCZ Vertex3(60GB, SATA3, EMLC)
=>» Vendor’s perf.: 60000~85000 (4KB IOPS)

=>» Fio’s perf: 10000~15000 (4KB IOPS)
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! The Problem :
- 0S is still in the Dark Age !

Storage==HDD
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OS Should be Re-Designed!

— synchronous /O path
-3 asynchronous /O path

. A
VFS/File System |
I
X !
Y R [Source of Delays]
Block Layer [ feocess | 1|
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PHOSIEIPN G | |5 | software
" 7 —S— R— - z1
i <wail_queue> 923 | .
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Figure 1: Common /O path in Linux storage stack ————



Our Experience

= High-performance SSD
o0 DRAM-based SSD (provided by Taejin Infotech)

0 7 usecs for reading/writing a 4 KB page

0 Peak device throughput: 700 MB/s == 1.4GB/s
o DDR2 64 GB, PCI-Express type

{lozone, 16 Thread, Linux stack}

Random Read = 50 MB/s
<< Device Throughput (700 MB/s)

-------



Optimization Approach
M1n1izing Mitigating [ Application ]

Per-Request Per-Request
Latency Latency

Page
Cache miss fault

Block 1/0

Subsystem

High Throughput

[ Fast Device ]




Optimization Techniques

éihgle thread /0O merge opportunities

A grietm B 297



Before & After
4 Orlgmal @ +Polling = +Temp. Merge = +Mult. Paths

o) Q] A% (v €] A1)

Misunderstood
read—-ahead context
n-Merge in filesystem
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Sequential Read Sequential Write Random Read Random Write
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Approx
100%
I0OPS N> @
Improvement
Approx
2X 25% (9@
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= Channel [mprovement

Bandwidth =



New Challenges

Block Driver Device
4KB 4KB

Temporal Merge

nchronous Merge



- Addressing New Challenges
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Addressing New Challenges

I/0 Pipelining
® ddr2, no delayed poll?ng

500 -ddr3, no delayed polling——
m ddr3, pipelining

450
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Are we good?

latency design requires direct access to
d-;"e ce queue & and tags







Byte Addressable 1/0
“Block-less 1/0 Interface”

ock based H/W, S/W is a problem!

Incurs B/W overhead

Incurs Additional Overhead

j Bandwidth Waste J

Additional Transfer Time

Metadata (in-flight) allocation.

Multiple block unit access.
Multiple File System lookup.




~ Can we Eliminate the Block I/F?

Applications: Yes << No h

Block I/F based I/0 stack. Some apps can live without them.
Some cannot. But most of them are
optimized based on “blocks”

User
level

VFS, Page Cache, File System: No!

: Definitely based on blocks.
kernel Page Caching o :
level : Optimization based on blocks.
File system (e.g. ext2)

Block layer

Fast storage device

Block layer & Device driver: Yes!
Easy if the H/W supports it.
Just a matter of changing addressing
schemes. )

H/W: Yes
Can eliminate if vendor support
is there.

\_But they ask: Can S/W do that?” )
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s Block-less I1/0 Path

= Re-design an I/0 path free from blocks.

0 Abandon page cache: Doesn’t help us much!

0 Fragment based FS: BAFS (Byte Addressable FS)
0 Byte addressable [/0 driver & device

o Synchronous [/0

Block I/F based 1/0 stack. Byte Addressable 1/0

User
User
level File system

Page Caching Kermol
. Raw device driver
File system (e.g. ext2) level

Block layer device Fast storage device

Device driver

device Fast storage device
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Block-less 1/0 Path: Overview

VFS, Page Cache-less
o0 Block based page cache management overhead.
0 Poor random I/0 cache hit ratio.
o Just additional overhead. = Let’s live without it.

BAFS (Byte Addressable File System)

O Preserve [/0 size as same as possible
o Fragment Based instead of Block Based

Byte Addressable Raw I/0 device driver.
0 Proprietary Device Driver for Low Latency
o Eliminate scheduler overheads

0 Other additional optimizations such as
zero copy, batched I/0, swapping queues.
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Byte Addressable
Raw I/0 device driver

Using I/0 I/F not restricted to LBA's.

o0 Implemented as a character device.

0 <Command, Offset, Request size> based 1/0
Internal Optimizations

I/O regeust, 1/0 regeust, I/O reqgeust,
[Batch 1/0]
DMA operations
Batching 1/O
request request request
enqueue dequeue

Swapping Queues] .
~ [Swapping Queues]
No data copy User-level _ red, ‘ red;

------------------------------------------- req,

re
Kernel-level Al
reqq reqo

o [Zero Copy]
Global_queue, Global_gueue, Global_queue,
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Byte Addressable File System

Double Hashing based Metadata

Mgmt.

0 Key: filename(including path) / Value: inode

o Features flat directory access.

key Hash function Hash table

/ Filename,
/a/000.txt

. /a/000.txt

Elename /b/003.txt
a4 b ¢ /b/003.txt1

000.txt 001.txt 002.txt 003.txt 004.txt 005.txt F/ilfonof;n;gz — il |
' > /c/005.txt

<Directory structure>

<Hash table for setting and finding inode>
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Byte Addressable File System

Managing data region
O A inode manages data region by using fragments in the B-tree
o The fragments manitain information of data region

Fragments
o We use fragments for managing data region
o It can manage the proper data region for user requested size

..........................

...........
.................................
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Target System

= ’»»Hal‘dware

= CPU: 8 cores (Intel Xeon E5630 2.5GHz)
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Latency Reduction

Layer ‘: Functions In/Out Time (us)
VVVVVVVV mﬁg,ys_read in 0
Bt e dog_jsync_read in 0.5
""" ethreadpage in 4.5
generic_make_request in 8.5
: gééléléfi:cy_yrﬁaike;fequest out 11.5
.  scsi_request_fn in 135
iii:iiywzfzzf;.. : ”::::V out 205
o | n | 2
S _ssp in HL+22.5
_ sshmr_ ow__| HL+315
VVVVVVVVVVVVVVVVVV in HL+40.5
e T o I 5] in HL+43.5
VVVVVVVVVVV out HL+45.5
- sesi_run. in | HL+95
A sesi_run_g out HL+50.5
i s e bk don out HL+51.5
VVVVVVVVVVVVVVVVV out HL+55.5
= out HL+57.5
do_sync_read out HL+60.5
e sys_read out HL+60.8

Total time : 67.8us

The reduction for 1/O latency by about 3 times

Average latency (us)

Traditional I/O stack Proposed I/O stack



Bandwidth (MB/s)

Bandwidth (MB/s)

Experiment Results (FIO — DDR3)
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Experiment Results (FIO — DDR3)
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Experiment Results (IOZONE — DDR3)

Sequential Read and Write- 1/0 bandwidth
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Embracing Block Based

,,,,,, Eco-system
= Synchronous I/0 is not the only /0 path
-0 We have buffered I/0, mmap I/0,
page Swap [/0, Asyncronous [/0 (aio)...
- We caﬁ:t live without blocks...

FE Useiﬁespace So many previous applications are based
-~ onblockl/O0.
e 0 Kernelspace: There are more OS S/W based on blocks
or even chunks. (RAID, Volume mgr & etc...)
VVVVVV Standardlzed Block Based I/0 Controllers
- 0O Blockbased controllers & devces are already dominant.
- 0O Butthey also experience S/W limitations...
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Current Device Abstraction
is Not Enough - Too Coarse!!

- le. Can we implement polling without
proprletary low level device driver access?
VVVVV bio->bi_endio
(callback)
: _ NVRAM I/0

Direct Device Access | Optimizations Require

Blocked by I/F Direct Device Access
'::::::SQS! Layg};:,::::gcg queue_command(cmd, callback)
R pirectpevice Access
T slodkeabyur
 Lowlevel Nati 1/0 Tags, C ds, DMA Buff
iiizéiDewce Drlver g s - e —




We Need a Standard I/F
for NVRAM Storage 1/0

queue->make_request() is not enough!

o0 Redundant proprietary device driver code
infecting upper layers. = Just a workaround!

0 Monolithic I/0 strategy + Device Driver code.
VFS, Page cache, FileSystem, User App Access.
0 [/0 optimization is not restricted to
block I/0 layer & device drivers.

0 A standard way for the upper layers to ‘see’ the device
IS necessary.

o Standard I/F to provide a way to ‘standardize’1/0 opti

mizations to the rest of the OS.



Opposite Approach: Block-full1/0

HIOPS-Hardware Abstract Layer

0 Expand NVRAM optimizations beyond the
block I/0 layer.

o0 Provides NVRAM H/W Low Latency
Direct Access to upper layers.

Expand the use of H/W direct access API

0 We can apply various optimizations based
on these Low Latency Direct Access Operations.

0 Apply these optimizations to the upper layers.
(i.e. page cache, swap 1/0, RAID, userspace API)
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HIOPS Hardware Abstract Layer

“Fine Grained Device Abstractions”
o Buffers, Commands, Queues, Tags and Corresponding Operations.

Define ‘direct’ operations to these device
abstractions.

O i.e.IsI/0O on tag pending?
o i.e. Do we have free 1/0 slots(tags)?
O i.e. Map a command or commands to a tag

Serves as a boundary for device driver issues.
o Isolates software issues from generic OS parts.

No overhead: Just a function pointer call.
o i.e. VFS layer implementation
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HIOPS Hardware Abstraction Layer

/0 request (block / fragment) from upper layers Completion Up-calls
Ex> Block interface (submit_bio(bio)l l

I/0 Strategy: “iostrat”

" Nies 1/0 Strategy specific
Query “Capabilities Q/u eue strﬁsc,tur; e Direct HAL Calls

Request Available [/0 Tag From Upper
Bulld and Issue command Layers

sy Check for completion
Interrupt based upcalls
HIOPS HAL

Low Level Device Driver (Controller Driver)

Controller “ctrl” Device: “dev”

I_I. IRQ. llirqn . Queue, TagS, COmmands




Host Controller-wise Application
of HIOPS HAL

HIOPS H/W AbStl‘aCtion AHCI: Devices connected to POI‘ItS

|
Controller: “ctrl” AHCI HBA NCQ “Queue

- Multiple iRQ Lines LI_ Tags._] “‘
IRQ: “irq" If using MSI-x - —
[_‘Commands

Nevices as PCI functions

. L NVM-e \VM-e “Ring buffer Queue”

Device: “dev” Q1|[m[MER AR
— = = ~.w1-e HBA Queue
queue: 1oqueue i Multiple iRQ Lines Q2 ——I Entries

= If using MSI-x
Queue entries(tags): “iotag” Cmpl. Q| | 5] _IJJ“
ommand: cm ]SM PCI-e JSM Device(  Ssingle 1/(') ]
= JSM Altera ) Slot (tag

FPGA .
Single line IRQ Mult[:pie.Buffer -]
ntries




Case Study 1: User Level Polling

fffff user level application polling based

synchronous I/0 (An extreme case)

— Call check for completions.
77777777777777777 Id up I/0 command (repeat until we have...)  Process /0 tags finished.
- Signal O/S to request I/0

Mmap buffer § loctl() 3 Ioctl() g Ioctl() @ Mmap buffer

|

Check tag \fompletions \54;1 command &

v post process



Case Study 2: Page cache I/0 batch

Write buffer I/0 incurs small I/0 problem.
How about batching them in one go?

0 Batch dirty blocks on one device round trip...

Page cache flush thread flushing dirty pages.

Flush thread collects dirty pages.

Request multi pIe 1/0 tags 1/0 Device Context
Allocate multiple command Check tag completions Detach command &
Attach multiple cmd+tag post process

HIOPS HAL
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HIOPS-HAL based 1/0 stack
Userspace

VFS cioned from 3.2.40 Block-less
Ext4 file system cloned from 3.2.40 File System

Linux Block I /0 based I/0 Strategies
Block I/F

. Objects
Linux block1/0 S
Request Queue Optimized 1/0 Block-less 1/0 (I/0 Str

I/0 Strategy Strategy Strategy Device,

Direct API Calls
Direct access to HAL

Block-less I/F

gy, Controll
ue, Tags...)

OPS Low Level Device Drivers



HIOPS-HAL based 1/0 stack

US erspace

& VES cloned from 3.2.40 Block-less
Ext4 file system cloned from 3.2.40 File System

S Low Level Device Drivers
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Conclusion

O Block full 1/0
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