Improving NAND Endurance by Dynamic Program and Erase Scaling

Jihong Kim

Department of Computer Science and Engineering Seoul National University, Korea

NVRAMOS 2013

October 24, 2013

Trend 1: NAND Capacity

The cost-per-bit of NAND devices is continuously improving.

Trend 2: NAND Endurance

The NAND endurance is drastically decreased last 4 years as a side effect of recent advanced technologies.

Trend 3: Total Amount of Writes

The total amount of writes of NAND-based storage does not increase as much as we expected.

Trend 4: Lifetime of NAND-Based Storages

Existing Lifetime Enhancing Schemes

Our Goal

Improving the NAND endurance is required for sustainable growth in the NAND flash-based storage market.

Outline

- Introduction
- Motivation
- Key Components of the DPES Approach
 - Erase Voltage Scaling
 - Program Time Scaling
 - Dynamic Program and Erase Scaling
- Implementation of DPES-Aware FTL
- Experimental Results
- Conclusion

Motivation: Device Physics Model

Cross-section view of NAND flash memory cells

Overview of Our Proposed Approach

without degradation in the overall write throughput

Outline

- Introduction
- Motivation
- Key Components of the DPES Approach
 - Erase Voltage Scaling
 - Program Time Scaling
 - Dynamic Program and Erase Scaling
- Implementation of DPES-Aware FTL
- Experimental Results
- Conclusion

Erase Voltage Scaling

"Effective wearing represents the effective degree of NAND wearing after one P/E cycle."

Lowering the erase voltage

can reduce the effective wearing.

Effect of Erase Voltage Scaling

Writing Data to a Shallowly Erased Block

To write data to a shallowly erased NAND block, it is necessary to shorten the width of Vth distributions.

Program Time Scaling

Tradeoff: {Program time} vs. {Width of Vth distributions}

15 / 31

Minimum Program Time Requirement

Example of EVmode and Wmode Selection

Vth distribution erased with **EVmode(2)**

For writing a block erased with EVmode(2), Wmode(2), Wmode(3), Wmode(4) should be used.

Lazy Erase Scheme

Dynamic Program and Erase Scaling

Program times and erase voltages are dynamically changed for improving the NAND endurance .

DPES enables S/W to exploit the tradeoff relationship between the NAND endurance and the erase voltage/time.

Outline

- Introduction
- Motivation
- Key Components of the DPES Approach
 - Erase Voltage Scaling
 - Program Time Scaling
 - Dynamic Program and Erase Scaling
- Implementation of DPES-Aware FTL
- Experimental Results
- Conclusion

Overview of DPES-Aware FTL (AutoFTL)

AutoFTL: Write Mode Selection

The DPES manager chooses the most appropriate write mode depending on the buffer utilization ratio.

DPES-Aware Write and Read Operations

AutoFTL: Erase Voltage Mode Selection

	If we know <mark>W mode(k)</mark> before a block is erased	If we don't know <mark>W mode(k)</mark> before a block is erased	
Cases	Foreground garbage collection	Background garbage collection, wear leveling	
EVmode(i)	i = k	Prediction based on the past utilization history	
		Incorrect prediction	

AutoFTL: DPES-Aware Garbage Collection

Outline

- Introduction
- Motivation
- Key Components of the DPES Approach
 - Erase Voltage Scaling
 - Program Time Scaling
 - Dynamic Program and Erase Scaling
- Implementation of DPES-Aware FTL
- Experimental Results
- Conclusion

Experimental Settings

		Configuration 1	Configuration 2
NAND flash chip		128 blocks/chip, 8 KB/page	
	Chips/channel	2	8
Extended FlashBench*	# of channels	1	4
configuration	Size of circular buffer	80 KB	32 MB
	NAND timing model	Timing accurate emulation model using hrtimers (variation < 1%)	
I/O traces		Mobile (2ea)	Server (6ea)

*S. Lee et al., "FlashBench: A Workbench for a Rapid Development of Flash-Based Storage Devices," IEEE Int. Symp. Rapid System Prototyping, 2012.

Characteristics of I/O Traces

Result 1: Normalized Endurance Gain

Result 2: Overall Write Throughput

The decrease in the overall write throughput over baseline was less than 2.2%.

Conclusion

 We have presented a system-level approach for improving the lifetime of flash-based storage systems using DPES.

- Actively exploits the tradeoff relationship between the NAND endurance and the erase voltage
- Automatically changes the erase voltage and the program time
- Makes the key FTL modules DPES-aware
- Improves the NAND endurance by 61.2% on average (with less than 2.2% decrease in the overall write throughput)

✓ Future Work

 Develop adaptive mode selection rules for adequately reflecting the varying characteristics of I/O workload