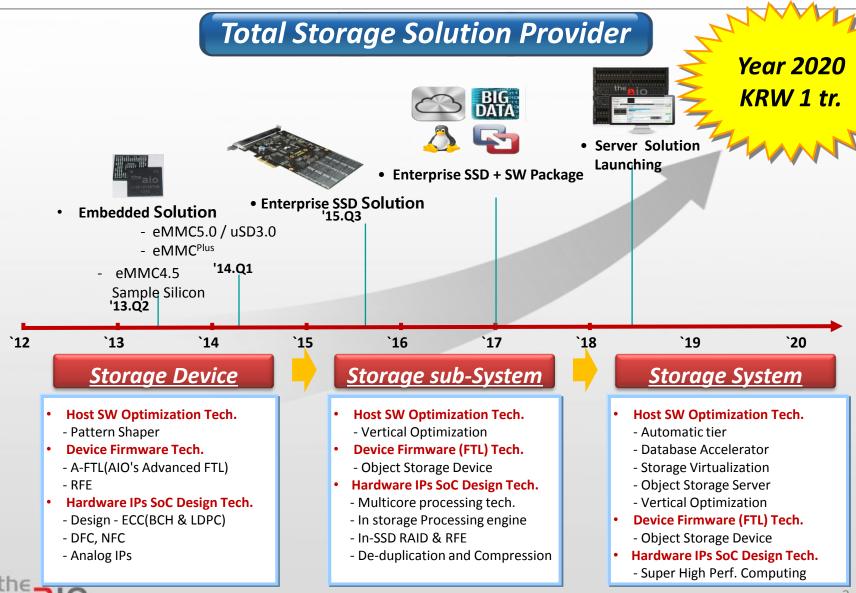
Leading Next Storage era Through Vertical Optimization

Jin-hyoung Kwon
TheAIO Co., Ltd.

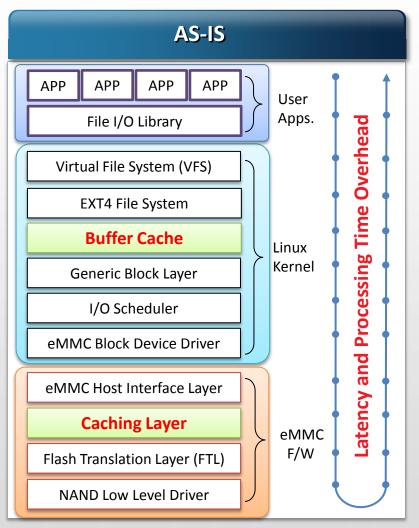
Oct., 2013

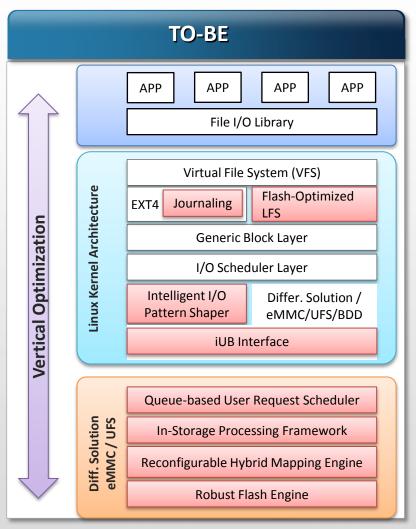


Company Overview

Company Name	The-AIO / the-aio co., Ltd. (The Advanced IO)					
Vision	Total Storage Solution Provider					
Establish Day	Jun 16 th 2011					
CEO	Jin-Hyoung, Kwon (jh.kwon@the-aio.com)					
Products	 Standard Product : eMMC/UFS/SD controller and S/W Differentiated Product : SpikeNANDTM, eMMC^{Plus} etc. controller and S/W Storage Sub-System : Enterprise SSD + SW Package 					
Members	49 People (R&D proportion 84%)					
Address	KINS Tower 17 th Floor, 25-1, Jeongja-dong, Bundang-gu Sungnam-si, Gyeonggi-do, Korea					
Contact	Tel: +82-31-716-0170 Fax: +82-31-716-0580 E-Mail: Sales@the-AlO.com Home Page: www.the-AlO.com					

Vision

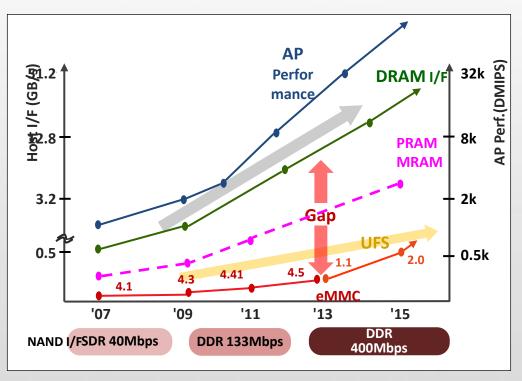


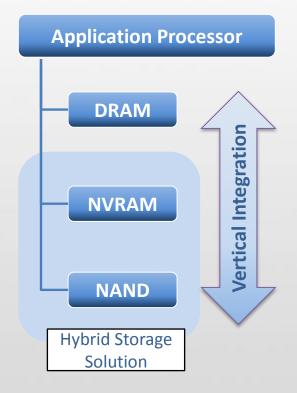


Vertical Optimization and Integration

Key Technology for Next Storage Era

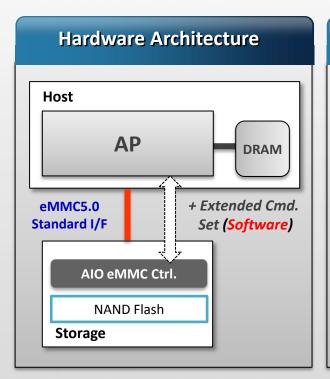
Legacy storage stack which was developed for HDD has many limitation

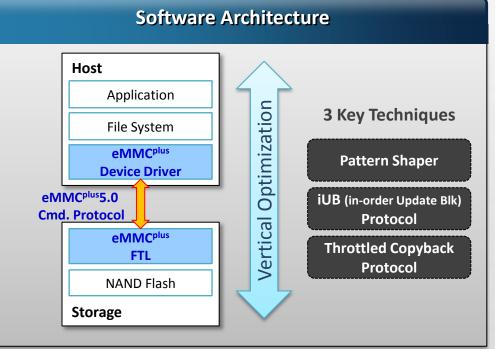




Needs for better storage performance

- NVRAM can be a new solution for better storage performance
 - Pros.: NVRAM can compensate for the performance gap between DRAM and NAND
 - Cons.: Need to clear issues from marketability and capacity
- AIO is proposing a NVRAM-NAND hybrid storage solution
 - NVRAM-NAND hybrid storage solution covers NVRAM standalone issues





eMMC^{plus} 5.0 Solution

- Advanced eMMC Solution with Full Compatibility with Standard eMMC5.0
 - No Host Side HW Change needed
- Higher Performance
 - 10x Higher Random Write Performance : Pattern Shaper
- Reliability with Low Cost TLC NAND
 - 4x Longer Endurance : Pattern Shaper / iUB → Low Cost (TLC instead of MLC)

Demo: Competitor eMMC vs. eMMC^{plus}

Androbench Settings

Write file-size : 16MB

Read file-size : 32MB

Sequential IO size : 256KB

Random I/O size : 4KB

• # of SQL transaction : 1000

File system utilization: 0%

NAND : 64Gb MLC x 2 way

	Competitor	AIO eMMC ^{plus}
Sequential Read	93.2 MB/s	27 2 MR/c
Sequential Write	22.6 MB/s	20 E MD/-
Random Read	12.9 MB/s	1 F O N/D /a
Random Write	1.5 MB/s	2 5 MR/c
SQLite Insert	25. 112.4 TPS	140 0 TDC
SQLite Update	113.7 TPS	122.8 TPS
SQLite Delete	120.7 TPS	12/LQ TDC
Browser	54.3 ms	34 6 ms
Market	128.9 ms	6% 114.5 ms
Camera	121.9 ms	105.8 ms
Camcorder	266.2 ms	249.2 ms
Total Time	72''	47''

eMMC^{plus}4.51: Performance Summary

MP version silicon is expected to *outperform competitors by significant amount*[Performance in OS-less environment (over raw device)]

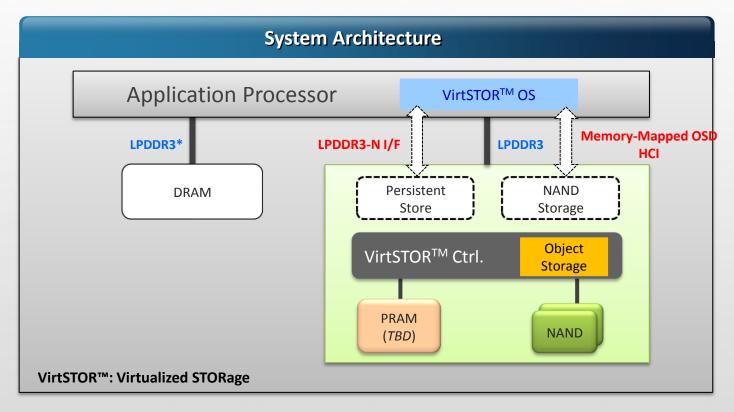
OS-Less (Raw Device)		1 st Silicon		MP Silicon (Estimated)		eMMC 4.51 Competitor		
		1Ch. 2way 16GB@DDR200		1Ch. 2way 16GB@DDR266		1x2 16GB	1x2 16GB	1x4 16GB
		eMMC	eMMC ^{plus}	eMMC	eMMC ^{plus}	А	В	С
Sequential (MB/s)	Read	140	←	180	+	169	166	125
	Write	62	←	80	+	37	60	38
Random (IOPS)	S-Read	8,774	←	9,000	←†	7,501	5,450	4,553
	A-Write	3,011	15,872	3,100	17,920	2,110	2,388	2,243

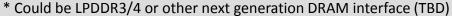
[Performance in Android-Linux environment (over file system, AlOzone)]

Sequential (MB/s)	Read	111	116	120	120	102	99	83
	Write	58	61	70	70	34	47	35
Random (IOPS)	S-Read	3,316	3,073	3,400	3,400 [†]	2,949	2,648	2,278
	A-Write	1,819	11,666	2,000 [‡]	13,200	1,737	1,575	1,356

Note1: eMMC^{plus} performance is calculated based on eMMC performance

Note2: NAND for AIO eMMC – 64Gb MLC of B company (1xnm)




[†] Constant regardless of range (iUB mapping)

VirtSTOR™: NVM-Powered Storage Solution

- NVM-Unified Solution to Improve Performance and Reliability
 - NVM-Powered : Ultra Fast Random Performance, Reliability Enhancement
 - Dual-Mode Access : Persistent Object Interface, Object-Storage Device (OSD) Interface
 - Object-based NAND Space Management : Common Backend Store

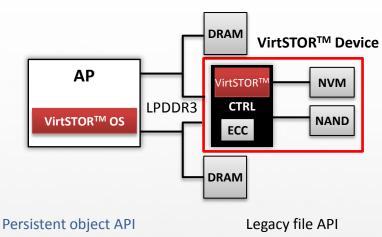
VirtSTOR[™] Technology

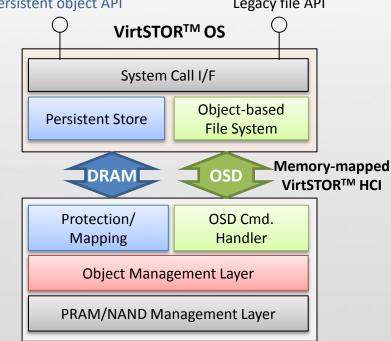
Object-based NAND space management

- Common backend store
- Infrastructure for intelligent storage; i.e., In-storage Processing Engine

Tiered storage with NVM at the first tier

- Un-buffered small random writes
 - E.g., Database, journal data, lock files, meta data of file system and FTL
- Temporary data update
 - E.g., LSB/CSB backups


Internal use of NVM


- FTL meta management
- NAND reliability information storage

Thin-provisioning of NVM

- Swapping between PRAM \leftrightarrow NAND
- Hardware-assisted PRAM access
 - TLB for minimum access latency

Effectiveness of Proposed Architecture

High Performance

- NVRAM absorbs random write traffic from applications and file systems
- Application directly accesses persistent store; no OS overhead
- Fast booting and application start-up; recovery but no reconstruction, XIP

High Reliability and Endurance

- Smaller WAF(write amplification Factor); random writes to NVRAM
- In-storage RAID technique; NVRAM as a parity store
- LSB/CSB page data backup and NAND reliability information in NVRAM

Easy integration and Maintenance

- Thin file system stack in operating system
- Tiering is performed autonomously by storage
- Architecture transparent to application and file system

Low Cost

- Thin provisioning of NVRAM with high capacity backup storage (i.e., NAND)
- Smaller SRAM usage for NAND management

New Storage Solution Era begins with Cooperation

Innovating in Flash Storage

Thank You

Tel. +82-31-716-0170

sales@the-aio.com