
2014.10.31.

Dongjun Shin

Samsung Electronics

Contents

■ Background

■ Understanding CPU behavior

■ Experiments

■ Improvement idea

■ Revisiting Linux I/O stack

■ Conclusion

2

Background – Definition

■ CPU bound

– A computer is CPU-bound (or compute-bound) when the time for it to complete a task
is determined principally by the speed of the central processor: processor utilization is
high, perhaps at 100% usage for many seconds or minutes (wikipedia)

■ I/O bound

– I/O bound refers to a condition in which the time it takes to complete a computation is
determined principally by the period spent waiting for input/output operations to be
completed (wikipedia)

■ In reality

– I have a lagging application. Who is to be blamed?

– I have a lagging application and it seems that there are lots of I/O. It must be I/O
bound.

– I have a lagging application and it seems that there are lots of I/O. I can’t believe it
because it’s running on ultra fast SSD!

3

Background – Mobile Benchmark

■ AnandTech: Samsung Galaxy S5 vs. Galaxy Note 4

– What’s the cause of read I/O regression?

4

AP eMMC

Galaxy S5 S801 2.5GHz x 4 5.0

Galaxy Note4 S805 2.7GHz x 4 5.0

http://www.anandtech.com/show/7903/samsung-galaxy-s-5-review
http://www.anandtech.com/show/8613/the-samsung-galaxy-note-4-review

Understanding CPU Behavior (1/2)

■ CPUFreq governor

– Performance

 This locks the phone's CPU at maximum frequency

– Powersave

 This locks the CPU frequency at the lowest frequency

– Ondemand

 Boost clock speed to maximum on demand and step down if CPU load is low

– Interactive

 Similar to ondemand, but this governor dynamically scales CPU clock speed in response to
workload

 Interactive is significantly more responsive than ondemand, because it's faster at scaling to
maximum

■ io_is_busy

– Flag that determines if waiting for IO should increase CPU utilization in bump up CPU
frequency (for ondemand and interactive)

– Tradeoff: performance vs. power

5 https://android.googlesource.com/kernel/common/+/android-3.4/Documentation/cpu-freq/governors.txt

Understanding CPU Behavior (2/2)

■ Characteristics of ARM big.LITTLE scheduling

– All interrupts are handled by CPU0

 Load-balancing of interrupts across cores is not always the best solution*

– Designed for power efficiency

 Only use big cores when it is necessary**

■ What’s the impact of this scheduling on I/O intensive app?

6

* Migrating software to multicore SMP systems (by Satyaki Mukherjee, ARM)
** Update on big.LITTLE scheduling experiments (by Morten Rasmussen, ARM)

Migrate to big

Experiments

■ Hardware: ODROID XU3

– Exynos5422 (4x A15 1.2-2GHz, 4x A7 1-1.5GHz)

 Little(A7): CPU0-3, Big(A15): CPU4-7

– 2GB LPDDR3 DRAM

– eMMC 5.0 HS400 64GB

■ Software: Android 4.4.4

– Linux 3.10.9

■ Benchmark: fio

– Single thread: SWRWSRRR (3 loops for each)

– File size: 100MB (direct I/O), 1GB (buffered I/O)

– I/O chunk: 256KB for sequential, 4KB for random

■ Parameters

– Governor: interactive (default), powersave (min), performance (max)

 io_is_busy: toggle for interactive

– Affinity: big vs. little

7

Experimental Results – 100MB Direct I/O

■ I/O throughput scales with CPU clock

– Performance vs. powersave: +30% for RR & RW, +20% for SR, +15% for SW

– Interactive & io_is_busy=0: almost same with powersave

■ Effects of big.LITTLE

– +15% for SW

8

1.2 ~2 2 1.2 1 ~1.5 1.5 1 1.2 ~2 2 1.2 1 ~1.5 1.5 1

1.2 ~2 2 1.2 1 ~1.5 1.5 1 1.2 ~2 2 1.2 1 ~1.5 1.5 1

(numbers in the box means CPU clock frequency in GHz)

Experimental Results – 1GB Buffered I/O

■ Benchmark results are higher and less variable than direct I/O

– Buffered vs. direct: +100% for SW & RW, +50% for SR

■ RR is still CPU bound

– Performance vs. powersave: +30%

– big vs. LITTLE: +20%

9

1.2 ~2 2 1.2 1 ~1.5 1.5 1 ~2 ~2 2 1.2 ~1.5 ~1.5 1.5 1

1.2 ~2 2 1.2 1 ~1.5 1.5 1 ~2 ~2 2 1.2 ~1.5 ~1.5 1.5 1

(numbers in the box means CPU clock frequency in GHz)

CPU Load & Scheduling Analysis

■ fio runs on 3x A7 only although all 8 cores are available

– fio process migrates among A7 cores

■ Issues

– CPU migration may be harmful for I/O intensive workload (D-cache efficiency)

– A15 is faster at I/O handling

10

SW RW SR RR

<Buffered I/O, interactive governor>

Direct I/O vs. Buffered I/O

■ Overall CPU utilization of direct I/O is lower by imbalanced %sys vs. %io

– Balanced means “well-pipelined”

■ Buffered sequential I/O is much faster when %sys is higher

– End-to-end pipeline: readahead, delayed write

■ Buffered RW is faster mainly due to eMMC cache (not CPU dependent)

11

<fio in direct I/O> <fio in buffered I/O>

SW SR

Little vs. Big

■ Buffered I/O performance is almost the same except RR

– CPU load is different: big has higher %io

– Big has potential room for improvement if %io is balanced with %sys (more pipeline)

■ RR throughput has some relationship with CPU migration policy

– CPU migration: big << little

12

<fio running on LITTLE> <fio running on big>

RR

Cf. AndroBench (AnandTech)

■ I/O performance is lower than fio (direct I/O)

– App keeps migrating among little cores

– CPU utilization is balanced, but is underutilized  app is slow

13

SW & SR

Improvement Idea

■ I/O friendly CPU scheduling

– ARM big.LITTLE scheduling is still in work-in-progress

■ Command queueing

– End-to-end parallelism by multiple I/O threads or async I/O

– Good for benchmark vs. real user benefit

■ NVDIMM

– Move NVM from I/O bus to memory bus (no DMA!)

 SNIA NVDIMM SIG (http://www.snia.org/forums/sssi/NVDIMM)

– OS & BIOS support is necessary

 Linux persistent memory API (https://github.com/pmem/linux-examples)

14 <UFS vs. eMMC @ NVRAMOS 2013> <How it works @ SNIA NVDIMM Tutorial>

http://www.snia.org/forums/sssi/NVDIMM
https://github.com/pmem/linux-examples
https://github.com/pmem/linux-examples
https://github.com/pmem/linux-examples
https://github.com/pmem/linux-examples

Revisiting Linux I/O Stack

■ Design of Linux I/O

– Designed when CPU >> DRAM >> I/O

– POSIX I/O results in memory operation

– Buffered I/O, unified VM, DMA, …

■ CPU technology

– Clock speed race has been stopped

– Mobile computing trend puts more
emphasis on power-efficiency

■ Storage

– Flash is much faster than HDD, but still
trying to mimic HDD (FTL, position in
I/O stack)

– SATA/SCSI  NVMHCI  NVDIMM(?)

15
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Conclusion

■ What is the bottleneck if flash storage is fast enough?

– I/O bound: total I/O latency by software barrier – sync(), journaling by FS & DB

– CPU bound: when CPU utilization is not balanced

■ Which I/O methods to use for benchmark?

■ Research trend keeps changing

– New storage  optimizing SW stack  new SW & HW architecture

16

Improvements Issues

CPU bound Multi-core (homo vs. hetero) No more CPU clock speed scaling
Trends toward power-efficiency

I/O bound Flash memory, I/O stack optimization,
clustering

I/O is getting faster
Deciding scale-up or scale-out

Pros Cons

Buffered I/O Closer to device-level number, less CPU-
bound

Need large file for benchmark to get
consistent results

Direct I/O Get consistent result in short time Gap between benchmark and device
number, more CPU-bound

