
File System Challenges in
Consumer Electronics Products

정찬균 (Chan Gyun Jeong)

SW Platform Lab., Corporate R&D
LG Electronics, Inc.

2014/10/31

1

Contents

• LG webOS TV Overview

• File Systems in webOS TV

• Database in webOS TV

• Squashfs Challenges and Improvements

• File Truncation Performance

• FUSE Overhead in Android

• File System Patents Issue

• eMMC Lifetime Issue

• eMMC Performance Issues

• Expectations for NVRAM

2

LG webOS TV Overview

Linux Kernel

TV Web App
(Javascript,

HTML5)

System UI Native AppsWeb App
(Javascript, HTML5)

Enyo Framework CP Engine

EPG Volume
+/-

Luna Bus

TV Service
(Watching,

Recording, HDMI)

webOS Services
100+

(Media Server / node.js
…)

• Make TV Simple Again : 3S (Simple Switching/Connection/Discovery)

Simple Switching

Simple Connection

Simple Discovery

3

File Systems in webOS TV

• ext4 file system used for a
partition requiring writable file
feature in runtime
 e.g. LG App Store partition

• Squashfs file system used for a partition
not requiring writable file feature in runtime
 e.g. rootfs, TV Service partitions

• Squashfs is a compressed read-only file
system, and provides high performance
with low overhead & size reduction

Fonts

TV Service

Root File System

Misc. Data

4

Database in webOS TV
• DB8 Database Service

 Fast and light Key-Value based DB service
 Data stored as JSON(Java Script Object Notation) objects in collections
 No SQL support
 Using LevelDB as backend

5

Squashfs Challenges and Improvements (1)

• Compression Algorithm Performance

Source: http://www.linuxjournal.com/node/8051/

LZO ZLIB

 High decompression performance needed
for CE products rather than compression
speed

 LZO (Lempel-Ziv-Oberhumer) outperforms
ZLIB(aka. GZIP) in decompression
performance

 Squashfs LZO support contributed to
mainline Linux kernel by LG

 LG contributed support for new LZ4
compression to mainline as well

 LZ4 outperforms LZO when unaligned
memory access is enabled in ARM

 Squashfs LZ4 ready to upstream into
mainline

134.4

88.9Squashfs

Seq. Read

Throughput

(MB/s)

ZLIB

LZO

6

Squashfs Challenges and Improvements (2)

• Single Decompressor Problem

• Squashfs provides only one decompression stream buffer which incurs
single-threaded decompression for concurrent requests

• Gives poor performance on parallel I/O workload of multicore systems
• Additional memory copy needed due to internal buffer

DecompressRead
Request 1

Read
Request 2

Read
Request 3

Internal
Buffer

Page
Cache

Read
Request N

Bottleneck

7

Squashfs Challenges and Improvements (3)

• Multiple Decompressor Solution

• Gives great performance for parallel I/O workloads on Multi-core systems
• Eliminates a memory copy by directly decompressing into page cache
• But requires more CPU and memory usage than single thread
• LG submitted a patch set and made a contribution to mainline kernel

DecompressRead
Request 1

Read
Request 2

Read
Request 3

Page
Cache

Read
Request N

Decompress

Decompress

Decompress

67.7

13.7
4

Concurrent

Seq. Read

Throughput

(MB/s)

Single

Multiple

8

File Truncation Performance

• How about performance if we need to cut data in the middle of a video
file ?

• Using normal file truncation works, but it takes very long time depending
on the video file size

• We modified some kernel file systems to help file truncation performance
and split a large video into smaller files in DVR-enabled products

• Recently, fallocate(FALLOC_FL_COLLAPSE_RANGE) feature merged
in mainline kernel

Cut Commercial

9

FUSE Overhead in Android (1)

• FUSE (File System In Userspace)
 Let applications create their own file systems without modifying kernel code
 Used to emulate external storage and ensure security in Android

VFS (Virtual File System)

bionic-c

sdcard service
(Userspace File System)Applications

Userspace

Kernel

EXT4

/dev/fuse /data/media

FUSE

/storage/sdcard0

1
3

2

 Needs 3 memory copies
for read() or write()

 Could be overhead in
some systems

10

FUSE Overhead in Android (2)

• Removes unnecessary memory copies by splice in Linux kernel

FUSEApplications EXT4
sdcard
servicewrite() write()read()

memory
copy

memory
copy

memory
copy

FUSEApplications EXT4
sdcard
servicewrite()

memory
copy

splice()

memory
zero copy

36

30Improvement

Rate (%)

Seq. Read
Seq. Write

11

File System Patents Issue

• BOM(Bill of Materials) cost is very important in CE products, BUT:

• Even patents cost for file systems matters a lot !

• SDXC includes M$’s exFAT file system as a mandatory feature

• Eventually adopting open standard file systems will benefits
manufacturers and end users

Source: digitaltrends.com, unwiredview.com

Estimated Licensing Fee per Device (US$)

20

60
iPhone

Android Phone

12

eMMC Lifetime Issue

• TV lifetime issue when using DVR(Digital Video Recording) function

 Huge amount of writing data incurred by
DVR enabled workload

 Even Timeshift (aka. Live Playback)
feature spec out for eMMC
 e.g. 5.7 GB for daily workload with

Full HD video (19.39 Mbps in Korea)

 How to optimize WAF(Write Amplification
Factor) in file system and block device
driver layer ?

 How to improve eMMC lifetime in FTL ?

12.7 13.3

3.1

6.9

Lifetime (Years)

8GB MLC 16GB MLC

8GB TLC 16GB TLC

< Workload >
400min/Day including 30min Recoding

13

eMMC Performance Issue

• MLC vs TLC on Performance

270

90

170

50

100

10

Seq. Read (MB/s) Seq. Write (MB/s)

16GB MLC(HS400)

16GB MLC(HS200)

8GB TLC(HS200)

 Not much performance issues for MLC-
type eMMC flash memory

 But performance lacks for TLC-type
eMMC in some workloads

 Any chances to improve performance of
TLC-type eMMC ?

14

Expectations for NVRAM

• Workload aware or File System aware FTL
 There are various workloads in smart phone and smart TV
 How about FTL customization for per-partition workload ?
 If FTL could handle I/O based on workload characteristic per-partition ?

 DVR partition : 4MB large sequential I/O and write priority
 Database partition : 1 ~ 4KB small random I/O

• Byte-addressable Persistent Memory
 Cost Innovation
 Mass Producibility
 Performance DRAM Flash

