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LG webOS TV Overview
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• Make TV Simple Again : 3S (Simple Switching/Connection/Discovery)

Simple Switching

Simple Connection

Simple Discovery



3

File Systems in webOS TV

• ext4 file system used for a 
partition requiring writable file 
feature in runtime
 e.g. LG App Store partition

• Squashfs file system used for a partition 
not requiring writable file feature in runtime
 e.g. rootfs, TV Service partitions

• Squashfs is a compressed read-only file 
system, and provides high performance 
with low overhead & size reduction

Fonts

TV Service

Root File System

Misc. Data
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Database in webOS TV
• DB8 Database Service

 Fast and light Key-Value based DB service
 Data stored as JSON(Java Script Object Notation) objects in collections
 No SQL support
 Using LevelDB as backend
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Squashfs Challenges and Improvements (1)

• Compression Algorithm Performance

Source: http://www.linuxjournal.com/node/8051/

LZO ZLIB

 High decompression performance needed 
for CE products rather than compression 
speed

 LZO (Lempel-Ziv-Oberhumer) outperforms 
ZLIB(aka. GZIP) in decompression 
performance

 Squashfs LZO support contributed to 
mainline Linux kernel by LG

 LG contributed support for new LZ4 
compression to mainline as well

 LZ4 outperforms LZO when unaligned 
memory access is enabled in ARM

 Squashfs LZ4 ready to upstream into 
mainline
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Squashfs Challenges and Improvements (2)

• Single Decompressor Problem

• Squashfs provides only one decompression stream buffer which incurs 
single-threaded decompression for concurrent requests

• Gives poor performance on parallel I/O workload of multicore systems
• Additional memory copy needed due to internal buffer

DecompressRead
Request 1

Read 
Request 2

Read 
Request 3

Internal 
Buffer

Page
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Read 
Request N
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Squashfs Challenges and Improvements (3)

• Multiple Decompressor Solution

• Gives great performance for parallel I/O workloads on Multi-core systems
• Eliminates a memory copy by directly decompressing into page cache
• But requires more CPU and memory usage than single thread
• LG submitted a patch set and made a contribution to mainline kernel

DecompressRead
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Read 
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Read 
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File Truncation Performance

• How about performance if we need to cut data in the middle of a video 
file ?

• Using normal file truncation works, but it takes very long time depending 
on the video file size

• We modified some kernel file systems to help file truncation performance 
and split a large video into smaller files in DVR-enabled products

• Recently, fallocate(FALLOC_FL_COLLAPSE_RANGE) feature merged 
in mainline kernel

Cut Commercial
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FUSE Overhead in Android (1)

• FUSE (File System In Userspace)
 Let applications create their own file systems without modifying kernel code
 Used to emulate external storage and ensure security in Android

VFS (Virtual File System)

bionic-c

sdcard service
(Userspace File System )Applications

Userspace

Kernel

EXT4

/dev/fuse /data/media

FUSE

/storage/sdcard0

1
3

2

 Needs 3 memory copies 
for read() or write()

 Could be overhead in 
some systems
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FUSE Overhead in Android (2)

• Removes unnecessary memory copies by splice in Linux kernel

FUSEApplications EXT4
sdcard
servicewrite() write()read()

memory 
copy

memory 
copy

memory 
copy

FUSEApplications EXT4
sdcard
servicewrite()

memory 
copy
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memory
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File System Patents Issue

• BOM(Bill of Materials) cost is very important in CE products, BUT:

• Even patents cost for file systems matters a lot !

• SDXC includes M$’s exFAT file system as a mandatory feature

• Eventually adopting open standard file systems will benefits 
manufacturers and end users

Source: digitaltrends.com, unwiredview.com

Estimated Licensing Fee per Device (US$)

20

60
iPhone

Android Phone
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eMMC Lifetime Issue

• TV lifetime issue when using DVR(Digital Video Recording) function

 Huge amount of writing data incurred by 
DVR enabled workload

 Even Timeshift (aka. Live Playback) 
feature spec out for eMMC
 e.g. 5.7 GB for daily workload with 

Full HD video (19.39 Mbps in Korea)

 How to optimize WAF(Write Amplification 
Factor) in file system and block device 
driver layer ?

 How to improve eMMC lifetime in FTL ?

12.7 13.3

3.1

6.9

Lifetime (Years)

8GB MLC 16GB MLC

8GB TLC 16GB TLC

< Workload >
400min/Day including 30min Recoding
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eMMC Performance Issue

• MLC vs TLC on Performance

270

90

170

50

100

10

Seq. Read (MB/s) Seq. Write (MB/s)

16GB MLC(HS400)

16GB MLC(HS200)

8GB TLC(HS200)

 Not much performance issues for MLC-
type eMMC flash memory

 But performance lacks for TLC-type 
eMMC in some workloads

 Any chances to improve performance of 
TLC-type eMMC ?
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Expectations for NVRAM

• Workload aware or File System aware FTL
 There are various workloads in smart phone and smart TV 
 How about FTL customization for per-partition workload ?
 If FTL could handle I/O based on workload characteristic per-partition ?

 DVR partition : 4MB large sequential I/O and write priority
 Database partition : 1 ~ 4KB small random I/O

• Byte-addressable Persistent Memory
 Cost Innovation
 Mass Producibility
 Performance DRAM Flash




