From Black Box to Grey Box:
Is it Feasible for Flash?

New NVRAM Storage Systems

HDD

Response Time =
Seek (10ms)
+ Rotational Delay (0.8ms)
+ Transfer Time

Flash Memory

" STT-MRAM

it line

PCM 8k

o C E—

= MTJ

- Reset (amorphous) i :

g /;;]t } .

g- Set (crystalline) E;/ -[; ;/,‘

,9 \ Source I Drain ,/J;J
/

Storage Class Memory

= oo [B[E[E-{ 28 [20] 28 |

toe [HEEH{2E [82] 8 1

LB el

s (BB S
S

Ozone(03): An out-of-order Flash memory Controller
Architecture, IEEE Trans. On Computes, May 2011.

Parallel Architecture

Ordinary Practice to Use SSD
“Storage as a Black Box”

No modification to Software

Application

A/S BE 7|ZH XA
OlE Moo= WE HEESA M3
SHj OJA9] HEHARE X2

B S8 2470 m27| SSDH:

| 40

foh | 12 |
s
[
{0
2

o080l HI

il =
Im mg'élﬁl: 4t

I[E [0 oxjr.

m

d | pr b

= E rno

T
=
Ho
]
Ao
1

ol

5

Operating

System
replacement:

“Free Lunch”
Performance

Replacing the h/w only

Unsatisfied Expectations

Can’t get the maximum
performance.

o C Was my investment worth it?
Application °
> Application experienced performance

What happened??

-

e.qg.) OCZ Vertex3(60GB, SATA3, EMLC)
=>» Vendor’s perf.: 60,000~85,000 (4KB IOPS
= Fio’s perf: 10,000~15,000 (4KB IOPS)

> Vendor provided performance numbers

WorKing hard for high
performance

Expecting customer

satisfaction

“Inefficient Resource Usage”

Application

1

OS Software

Host I/F

Host Controller

SSD Controller

=

Unexpected Performance Drop

e Unpredictable SSD performance
* Unexpected performance degradation
e OS Software overhead

Low Bandwidth Utilization

* Excessive round trips / low bandwidth
* Good-put vs Bad-put (I/O amplification)

Low Resource Utilization

* Unpredictable application behavior
e Bad I/O patterns (bad cache / prefetch hits)
e Low parallelism, hot spots / collisions

“Inefficient Resource Usage”

Application
- 7 Unexpected Performance Drop

1

e Unpredictable SSD performance
* Unexpected performance degradation
e OS Software ~ =g

OS Software -

* Unpredictable application behavior
e Bad I/O patterns (bad cache / prefetch hits)
e Low parallelism, hot spots / collisions

Storage is still a “Black Box”

Physical Interface SAS, FC, PCl-e, SATA" SATA, PCl-e” Not specified”

Reg. level I/F,
Command protocol

FF, Phy, Link, Transport,
Reg. level I/F, Command

FF, Phy, Link, Transport,
Command protocol

Target Devices

Register level I/F

Command Protocol

S

Available
Abstractions
(in standard)

Tape, Printer, Storage array,
Object Storage, CD/DVD,

protocol
Programming arch.

HDD, SSD, and more

Vendor specific,
SCSI Express”

SCSI command set
(SCC,SPC

(remote) Sequential /
Random Access Block
Space

Cache, Buffers

Queue
(SCSl-express only)

etc: Speaker, Tape,
Stream, and more...

CD-ROM
(ejectable media),
HDD, SSD

AHCI

ATA-8/ATAPI
command set

Random Access

Block Space

Cache (+NVCache)
Queue (short)
Interrupts (MSI/MSI-x)

etc: power ctrl,
swappable media,
monitor(SMART),
NVRAM (firmware)

PCl-e SSD,

Next generation memory

NVM-Express

NVM-Express
command set

Random Access
Block Space
Cache

Queue Pairs

(deep, multi)
Interrupts (MSI/MSI-x)

etc: power ctrl, NVRAM
(firmware),
metadata/LBA (OOB),
etc...

Storage is still a “Black Box”

Physical Interface SAS, FC, PCl-e, SATA" SATA, PCl-e” Not specified”
Scope FF, Phy, Link, Transport, FF, Phy, Link, Transport, Reg. lipel I/F,
‘n Reg_ Ievel |/|: CAmmand CAammand nrataranl qtocol
rgel poMe Jie] Target Domain: Smaller Scope (Specialized)
/ e (Standard & target devices get coupled)
Target Devices Tape, Printer, Storage array, CD=-ROMVI PCI= ;
Object Storage, CD/DVD, (ejectable media), Next genere .fon memory
HDD, SSD, and more HDD, SSD
Register level I/F Vendor specific, AHCI NVM-Express
SCSI Express”
Command Protocol SCSI command set ATA-8/ATAPI NVM-Express
(SCC,SPC command set command set
Available * (remote) Sequential / e Random Access e Random Access
Abstractions Random Access Block Block Space Block Space
(in standard) Space e Cache (+NVCache) * Cache
e Cache, Buffers Queue (short)
* Queue Abstractions: Storage is always a black box

el Random access block space with caches & queues

* etc: Speaker, Tape, swappable media, e etc: powe Virl, NVRAM
Stream, and more... monitor(SMART), (firmwarey,
NVRAM (firmware) metadata/LBA (OOB),

etc...

Towards Resource Efficiency?
“Model based Control”

I/O access pattern @I_ r‘ J‘Z
Application Behavioral KA E Spr K
/W

Model

Resource Allocation L W
Results (performance >

cassandra

_ﬂllo latency / throughput
SSD Behavioral
S/W Model

! 1/0 control

V4N

Towards Resource Efficiency?
“Model based Control”

Application Behavioral
Model

atency / throughput

r
‘ °
SSD Behavioral
S/W Model

! 1/0 control

Solution: “Open Up!!”

Grey Box Approach with SSDs

e SSD internals exposed to host S/W via | /Fs
— Provides means of visibility of peer resources
— Provides means of access to peer resources
— via well defined interfaces

* In a managed way

— Resources abstracted at a proper level to hide
proprietary details while providing flexibility

— Preserve security, robustness, orthogonality

Grey Box Approach with SSDs

Rigid —

| \ of abstraCt.lon

| (oreyness 2 e

Secure

Black
270) 4
SSD

Grey
Box
SSD

Read(LBA,size)
Write(LBA,size)

Flexible

Insecure

§ Chip. 0-0
Chip. 1-0 §

All
Open

Flexibility for the sake of efficient resource usage
Appropriate level of abstraction to protect proprietary details

What to Expose?

Set of operations (API)

/\/I:esource info
‘_T_T_> (Resource Behavioral Model)
Application info
<-T_T_‘ (Application model)

< T T Misc. operations

Interface defined for
Abstracted Resources

High Ivl.
GC scheduler Resource Model: GC thresholds
Examples> Pre-fetcher Application Model (code): Read stream context
Channels Resource Model:
Low Ivl. read(), write(), erase() timings

per channel block mapping

Case Studies:
Towards Efficient Resource Utilization
w/ the Grey Box Approach

Optimizing I/0 completion
Optimizing DB Transaction I/O
Optimizing on-storage graph traversal
Optimizing SSD latency

SSD cache prefetching

Multi-streamed SSD

Computation offloading
(query processing, filters, compression & etc.)

Optimizing /O Completion (1/3)

To Poll or to wait for an Interrupt

Interrupt based 1/O processing
1/0 command IRQ SoftIRQ
|

Application Application
Context 8~15us Context
Assuming microsecond ; Device 2~3us Schedule delay
. = Fesponse
range device response : time :

sleep
Polling based 1/0 processing

1/0 command

Busy wait

(polling) Far less context switches leads to

efficient 1/O processing

Assuming microsecond
range device response

time A Device
response

time

Optimizing /0O Completion (2/3)

* Problem with polling
— High CPU usage
— High bus utilization (frequent control register access)
— Low parallelism

e Dynamic poll

— D. Shin et al, “Dynamic Interval Polling and Pipelined Post I/O Processing for
Low-Latency Storage Class Memory,” HotStorage 2013

— Solves the problem of polling by predicting device response time

Dynamic Polling based 1/0 processing

/0 comman '-’;“S\Illyva;t
polling . .
T Not pQSSIb‘E Wlth
S

Yield CPU Early wakeup Flash 553. .

And wait Based on the Cannot predic :
Predicted Device response tume)
Predicted Device Device (GC suffer flush, collisions & etc

wait time response response time !
time

Optimizing /0O Completion (2/3)

* Problem with polling
— High CPU usage
— High bus utilization (frequent control register access)
— Low parallelism

e Dynamic poll

— D. Shin et al, “Dynamic Interval Polling and Pipelined Post I/O Processing for
Low-Latency Storage Class Memory,” HotStorage 2013

— Solves the problem of polling by predicting device response time

Dynamic Polling based 1/0O processing

Busy wait

(polling)
s) EEE——

/0 comman

Yield CPU Early wakeup .
. Based on the Wwhat if?
And wait
Predicted . s the OS
Devi . Device inform
Predicted evice Dewce. (i.e., time |eft to the
o b response response time -Se o
walit time time next Comp\etlon)

Optimizing I/O Completion (3/3)

Grey Box Approach
— ldea: The SSD explicitly informs the OS software for the I/O completion

— Method: Piggy back the tag and time left for the
next |/O completion on each I/0O

— Behavioral model: “Best effort time to completion”
e Based on information of I/0O requests in the completion queue
* Inform the next I/O processor to prepare next I/O completion

— Interface:

* Piggy backed info: “Time to next completion”

— Impact:

e Improves I/O processing latency & throughput

! Tag 31

Wakeup Threadl

Thread 0 ext tag: 23, 15us

Next tag: none, IRQ

Thread 2 Completion
Prediction

Window

Optimizing On-storage
Graph Traversal (1/2)

e On-storage graph traversal

— Read I/O on a series of blocks which have dependency
(i.e., i+1t block requires the it block read)

— i.e., B-tree lookup, social graph traversal
 Problem

— Low parallelism
(cannot batch: can’t predict next move)

— Multiple round trips (flash reads) for graph traversal

| ¢ | ¢

Host I/F \ $
B%ocko l I;lllocknl Bickgg /

= B e

3 round trips
from the host
for traversal
(linked list)

Optimizing On-storage

Graph Traversal (2/2)
e Grey Box Approach

— ldea: Inform SSD with the block traversal semantics
— Method: Trusted traversal code execution, or block format info

— Application Behavioral Model: Application block traversal logic
provided to the SSD

— Interface: Means to inform the SSD with the application logic
(trusted code?)

— Impact: less round trips = latency reduction

Host I/F
X f \ f . l’ / 1 round trip
BlockO Block72 Block83 from the host

for traversal
M M M (linked list)

Optimizing DB Transaction 1/0 (1/3)

* Problems with current storage with transactions
— Current storages are not ‘stable’: should avoid partial writes

— Current storages do not guarantee ‘durability / order’ on the common
case: durable writes require multiple costly cache flushes

— Multiple writes (write amplification / multiple round trips) required to
preserve both ‘stable’, ‘durable’ and ‘order’ properties

* Transactions with flash SSDs?

— Implementing a ‘stable’ storage with flash SSDs can be efficient:
append only writes (out of place updates)

— Can simplify DB storage engine designs w/ transactional support

Optimizing DB Transaction 1/0 (2/3)

 Grey Box Approach
— Idea: Let SSDs have transactional support
— Method: SSDs provide transactional features and guarantees

— Application Model: ACID properties on writes, WAL semantics, commit
protocol

— Interface: atomic write, begin_tx, end_tx, abort & etc...
— Impact: less round trips, less writes, efficient storage usage (append only)

e.g., InnoDB write protocol: /O to a transactional SSD

= 3 writes & fsyncs for an update - 1 atomic write w/ tx begin&end

~ 6 round trips - 3 round trips
write() fsync() write() fsync() write() fsync()

Host \ \ begm tx() write_ atomlc(t|d) end_tx() Host
4
SSD \ \ \ \ \ \ \ \ \ Transactional
— — — SSD
Redo log Double Write Media)
WAL Buffer Data-block ACID guarantees from SSDs
update

Y
Flush

Optimizing DB Transaction 1/0 (3/3)

 Related Systems

— [TxFlash] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional
flash,”, OSDI'08

— [AtomicWrites] x. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
Panda, “Beyond block I/O: Rethinking traditional storage primitives,”
HPCA'11

— [LightTx] Y. Ly, J. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A lightweight

transactional design in flash-based SSDs to support flexible transactions,”
ICCD’13

— [Mobius] w. shi, D. Wang, Z. Wang, and D. Ju, “Mobius : A High
Performance Transactional SSD with Rich Primitives,” MSST’ 14

Optimizing SSD Latency (1/4)

* Problem with resource collisions
— Reads, Writes, GC (valid page copy & erase)

— 1/O operations colliding on
SSD internal channels, chips, dies and planes

— Uncontrollable & unexpected latency spikes
e Long tail latency of SSDs

e Cause: Non-visibility & non-accessible SSD internals
— Cannot control when to trigger GC operations
— Cannot see which channel is idle

Optimizing SSD Latency (2/4)

 Grey Box Approach

— Idea: Have the application explicitly schedule I/O & GC operations on
multiple channels

— Method: Expose GC & I/0 operations w/ queue abstractions on each
channels, data replicated on distinct channels (2 replicas)

— Model: GC initiating threshold & current level of free blocks
— Impact: suppress latency spikes

Optimizing SSD Latency (3/4)

 Mockup Grey Box Approach Experiment
— Use multiple SSDs instead of SSD channels

(Requires H/W resource visibility)

— Latency sensitive & latency heavy I/O separation using replicas placed on

redundant H/W resources

(similar to read / write separation in Skourtis14)
* [Skourtis14] D. Skourtis, et al, “Flash on Rails : Consistent Flash Performance through

Redundancy”, ATC'14

— GC control APl enhanced SATA 6.0Gb/s SSDs provided by Samsung

SSD 0 l—| Read | Read | >
-------- o
SSD1= Read [—H# GC | Flush Read |———t—Pp
prsssassass] oo s sssssasas
SSD 24 Flush H—{ Read GC | Flush fr—
| ===
--------------- ‘
SSD 3= Read GC | Flush |lu Read |——m—1P
- >
Epoch 0 Epoch 1 Epoch 2
Token to Token to Token to
Even SSDs Odd SSDs Even SSDs
| Epoch barrier I~~~ "1 Heavy 1/O Token Flush 1/0
= I/O Timeline Read I/O |I| Garbage Collection

Latency spike suppression
(Epoch based R/W/GC separation)

CDF (%)

100

99.8

99.6

994

99.2

99

MIX ---

EPCH

-

| T r=
! D f

N~

Skourtis’14

R/W separation

S

1 H i

I
Normal
, 1/0
|

|| Greybox /4
Approach 'f

+GCCTRL —
T

100

1,000 10,000

100,000

Latency (us)

Cutting the long tail

Optimizing SSD Latency (4/4)

 Related Projects

[SDF] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF:
Software-Defined Flash for Web-Scale Internet Storage Systems,”
ASPLOS ‘14

[Rails] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S.
Brandt, “Flash on Rails : Consistent Flash Performance through
Redundancy,” ATC'14.

[HIOS] M. Jung, W. Choi, and S. Srikantaiah, “HIOS: A host interface
1/0 scheduler for Solid State Disks,” ISCA ’14

[PIQ] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha,
“Exploiting parallelism in 1/0 scheduling for access conflict
minimization in flash-based solid state drives,” MSST' 14

Challenges

* So many specialized APl instances?
— Specialization leads to multiple instances of APIs

— Need a way to lower the cost of APl development
and maintenance

 Market Adoption, Business model etc.
— Would there be a market large enough?
— What is the killer application of the approach?

Suggestions

* Programmable SSDs

— Define and develop a generic programmable SSD platform
to enable easy SSD behavior modification
e Ex> Willow (OSDI’14) UCSD

— Similar to Nvidia CUDA GP-GPU platform, Apple iOS app platform,
Android app platform

e Looking for killer apps

— “Provide a generic programmable SSD platform to the community

”

— Collective intelligence of multiple seed developer groups in the
industry and the academia looking for killer apps
(i.e., Open-Source SSD APIs)

— Expect emerging abstractions, models and applications
based on customer needs (industry) or research results (academia)

Conclusion

Inefficient resource usage caused
by the Black Box storage approach

— Non-visible & non-accessible peer resources
Conservative |/O strategies

Solution: Grey Box storage approach

— SSD internals exposed to host S/W via I/Fs
in @ managed way

Case studies:

— Host S/W can schedule resources to enhance the efficiency of
the system —> Feasible!

Future studies:
— Looking for a reliable way to use Grey Box SSDs

Thank You!

	From Black Box to Grey Box:�Is it Feasible for Flash?
	New NVRAM Storage Systems
	Ordinary Practice to Use SSD�“Storage as a Black Box”
	Unsatisfied Expectations
	“Inefficient Resource Usage”
	“Inefficient Resource Usage”
	Storage is still a “Black Box”
	Storage is still a “Black Box”
	Towards Resource Efficiency? �“Model based Control”
	Towards Resource Efficiency? �“Model based Control”
	Solution: “Open Up!!”�Grey Box Approach with SSDs
	Grey Box Approach with SSDs
	What to Expose?
	Case Studies: �Towards Efficient Resource Utilization �w/ the Grey Box Approach
	Optimizing I/O Completion (1/3)
	Optimizing I/O Completion (2/3)
	Optimizing I/O Completion (2/3)
	Optimizing I/O Completion (3/3)
	Optimizing On-storage �Graph Traversal (1/2)
	Optimizing On-storage �Graph Traversal (2/2)
	Optimizing DB Transaction I/O (1/3)
	Optimizing DB Transaction I/O (2/3)
	Optimizing DB Transaction I/O (3/3)
	Optimizing SSD Latency (1/4)
	Optimizing SSD Latency (2/4)
	Optimizing SSD Latency (3/4)
	Optimizing SSD Latency (4/4)
	Challenges
	Suggestions
	Conclusion
	Thank You!

