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New NVRAM Storage Systems 

Response Time = 
   Seek (10ms) 
   + Rotational Delay (0.8ms) 
   + Transfer Time 

HDD 

Flash Memory 

Storage Class Memory 

PCM 
STT-MRAM 

Ozone(O3): An out-of-order Flash memory Controller  
Architecture, IEEE Trans. On Computes, May 2011. 

Parallel Architecture 



Ordinary Practice to Use SSD 
“Storage as a Black Box” 

Operating 
System 

Application 

No modification to Software 

Replacing the h/w only 

Drop in 
replacement: 
“Free Lunch” 
Performance 



Unsatisfied Expectations 

SSD 

Application 

Working hard for high 
performance 

Expecting customer 
satisfaction 

Can’t get the maximum 
performance. 

Was my investment worth it? 

e.g.) OCZ Vertex3(60GB, SATA3, EMLC) 
Vendor’s perf.: 60,000~85,000 (4KB IOPS) 
Fio’s perf: 10,000~15,000 (4KB IOPS) 

Application experienced performance 

Vendor provided performance numbers 



“Inefficient Resource Usage” 
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Low Bandwidth Utilization 

Low Resource Utilization 

• Excessive round trips / low bandwidth 
• Good-put vs Bad-put (I/O amplification) 

• Unpredictable SSD performance 
• Unexpected performance degradation 
• OS Software overhead 

• Unpredictable application behavior 
• Bad I/O patterns (bad cache / prefetch hits) 
• Low parallelism, hot spots / collisions 
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Storage is still a “Black Box” 
Category “SCSI”, “SAS” “SATA” “NVM-e” 

Physical Interface SAS, FC, PCI-e, SATA* SATA, PCI-e* Not specified* 

Scope FF, Phy, Link, Transport, 
Reg. level I/F, Command 

protocol 
Programming arch. 

FF, Phy, Link, Transport, 
Command protocol 

Reg. level I/F, 
Command protocol 

Target Devices Tape, Printer, Storage array, 
Object Storage, CD/DVD, 

HDD, SSD, and more 

CD-ROM  
(ejectable media),  

HDD, SSD 

PCI-e SSD, 
Next generation memory 

Register level I/F Vendor specific, 
SCSI Express* 

AHCI NVM-Express 

Command Protocol SCSI command set 
(SCC,SPC 

ATA-8/ATAPI  
command set 

NVM-Express  
command set 

Available 
Abstractions 
(in standard) 

• (remote) Sequential / 
Random Access Block 
Space 

• Cache, Buffers 
• Queue 

(SCSI-express only) 
 

• etc: Speaker, Tape, 
Stream, and more… 

• Random Access  
Block Space 

• Cache (+NVCache) 
• Queue (short) 
• Interrupts (MSI/MSI-x) 

 
• etc: power ctrl, 

swappable media, 
monitor(SMART), 
NVRAM (firmware) 

• Random Access  
Block Space 

• Cache 
• Queue Pairs 

(deep, multi) 
• Interrupts (MSI/MSI-x) 

 
• etc: power ctrl, NVRAM 

(firmware), 
metadata/LBA (OOB), 
etc… 
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• Random Access  
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• etc: power ctrl, NVRAM 

(firmware), 
metadata/LBA (OOB), 
etc… 

Target Domain: Smaller Scope (Specialized) 
(Standard & target devices get coupled) 

Abstractions: Storage is always a black box 
Random access block space with caches & queues 



SSD Behavioral 
Model 

Host 
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I/O control 

I/O latency / throughput 
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Results (performance) 

I/O access pattern 

Towards Resource Efficiency?  
“Model based Control” 
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Solution: “Open Up!!” 
Grey Box Approach with SSDs 

• SSD internals exposed to host S/W via I/Fs 
– Provides means of visibility of peer resources 
– Provides means of access to peer resources 
– via well defined interfaces 

 
• In a managed way 

– Resources abstracted at a proper level to hide 
proprietary details while providing flexibility 

– Preserve security, robustness, orthogonality 



Grey Box Approach with SSDs 
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All 
Open 

Read(LBA,size) 
Write(LBA,size) 

Flexibility for the sake of efficient resource usage 
Appropriate level of abstraction to protect proprietary details 



What to Expose? 

GC scheduler 

Pre-fetcher 

Channels 

Resource Model: GC thresholds 

Application Model (code): Read stream context 

Resource Model:  
    read(), write(), erase() timings 
    per channel block mapping 

Examples> 
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Case Studies:  
Towards Efficient Resource Utilization  

w/ the Grey Box Approach 
 

• Optimizing I/O completion 
• Optimizing DB Transaction I/O 
• Optimizing on-storage graph traversal 
• Optimizing SSD latency 
• SSD cache prefetching 
• Multi-streamed SSD 
• Computation offloading  

(query processing, filters, compression & etc.) 
 
 



Optimizing I/O Completion (1/3) 

I/O command IRQ SoftIRQ 

Application 
Context 

Application 
Context 

sleep 

Device  
response 

time 

Interrupt based I/O processing 

Schedule delay 

8~15us 

2~3us 

I/O command 

Device  
response 

time 

Busy wait 
(polling) 

Polling based I/O processing 

Far less context switches leads to  
efficient I/O processing 

To Poll or to wait for an Interrupt 

Assuming microsecond 
range device response 

time 

Assuming microsecond 
range device response 

time 



Optimizing I/O Completion (2/3) 
• Problem with polling 

– High CPU usage 
– High bus utilization (frequent control register access) 
– Low parallelism 

• Dynamic poll 
– D. Shin et al, “Dynamic Interval Polling and Pipelined Post I/O Processing for 

Low-Latency Storage Class Memory,” HotStorage 2013 
– Solves the problem of polling by predicting device response time 

I/O command 

Device  
response 

time 

Dynamic Polling based I/O processing 

Yield CPU 
And wait 

Busy wait 
(polling) 

Early wakeup 
Based on the 

Predicted 
Device 

response time 
Predicted 
wait time 
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Optimizing I/O Completion (3/3) 
• Grey Box Approach 

– Idea: The SSD explicitly informs the OS software for the I/O completion 
– Method: Piggy back the tag and time left for the  

next I/O completion on each I/O 
– Behavioral model: “Best effort time to completion” 

• Based on information of I/O requests in the completion queue 
• Inform the next I/O processor to prepare next I/O completion 

– Interface:  
• Piggy backed info: “Time to next completion” 

– Impact: 
• Improves I/O processing latency & throughput 

Completion 
Prediction 
Window 

Next tag: none, IRQ 

Next tag: 23, 15us Thread 0 Tag 31 

Thread 1 Tag 23 

Thread 2 

Tag 17 

Wakeup Thread1 



Optimizing On-storage  
Graph Traversal (1/2) 

• On-storage graph traversal 
– Read I/O on a series of blocks which have dependency 

(i.e., i+1th block requires the ith block read) 
– i.e., B-tree lookup, social graph traversal 

• Problem 
– Low parallelism  

(cannot batch: can’t predict next move) 
– Multiple round trips (flash reads) for graph traversal 

 

Next: 
Block83 

Next: 
None 

Next: 
Block72 

Block0 Block72 Block83 

Host I/F 3 round trips 
from the host 
for traversal 
(linked list) 



Optimizing On-storage  
Graph Traversal (2/2) 

• Grey Box Approach 
– Idea: Inform SSD with the block traversal semantics 
– Method: Trusted traversal code execution, or block format info 
– Application Behavioral Model: Application block traversal logic 

provided to the SSD 
– Interface: Means to inform the SSD with the application logic  

(trusted code?) 
– Impact: less round trips  latency reduction 

 

Next: 
Block83 

Next: 
None 

Next: 
Block72 

Block0 Block72 Block83 

Host I/F 

1 round trip 
from the host 
for traversal 
(linked list) 



Optimizing DB Transaction I/O (1/3) 

• Problems with current storage with transactions 
– Current storages are not ‘stable’: should avoid partial writes 
– Current storages do not guarantee ‘durability / order’ on the common 

case: durable writes require multiple costly cache flushes 
– Multiple writes (write amplification / multiple round trips) required to 

preserve both ‘stable’, ‘durable’ and ‘order’ properties 
 

• Transactions with flash SSDs? 
– Implementing a ‘stable’ storage with flash SSDs can be efficient: 

append only writes (out of place updates) 
– Can simplify DB storage engine designs w/ transactional support 



Optimizing DB Transaction I/O (2/3) 
• Grey Box Approach 

– Idea: Let SSDs have transactional support  
– Method: SSDs provide transactional features and guarantees 
– Application Model: ACID properties on writes, WAL semantics, commit 

protocol 
– Interface: atomic write, begin_tx, end_tx, abort & etc… 
– Impact: less round trips, less writes, efficient storage usage (append only) 

 
 

write() fsync() write() fsync() write() fsync() 

e.g., InnoDB write protocol:  
 3 writes & fsyncs for an update 
 6 round trips 

Redo log 
WAL 

Double Write 
Buffer 

Media 
Data-block 

update 

SSD 

Host 

Flush 

begin_tx() end_tx() write_atomic(tid) 

I/O to a transactional SSD 
 1 atomic write w/ tx begin&end 
 3 round trips 

Transactional 
SSD 

Host 

ACID guarantees from SSDs 



Optimizing DB Transaction I/O (3/3) 

• Related Systems 
– [TxFlash] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional 

flash,”, OSDI’08 

– [AtomicWrites] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. 
Panda, “Beyond block I/O: Rethinking traditional storage primitives,” 
HPCA’11 

– [LightTx] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A lightweight 
transactional design in flash-based SSDs to support flexible transactions,” 
ICCD’13 

– [Mobius] W. Shi, D. Wang, Z. Wang, and D. Ju, “Mobius : A High 
Performance Transactional SSD with Rich Primitives,” MSST’14 



Optimizing SSD Latency (1/4) 

• Problem with resource collisions 
– Reads, Writes, GC (valid page copy & erase) 
– I/O operations colliding on  

SSD internal channels, chips, dies and planes 
– Uncontrollable  & unexpected latency spikes 

• Long tail latency of SSDs 
 

• Cause: Non-visibility & non-accessible SSD internals 
– Cannot control when to trigger GC operations 
– Cannot see which channel is idle 

 



Optimizing SSD Latency (2/4) 

• Grey Box Approach 
– Idea: Have the application explicitly schedule I/O & GC operations on 

multiple channels 
– Method: Expose GC & I/O operations w/ queue abstractions on each 

channels, data replicated on distinct channels (2 replicas) 
– Model: GC initiating threshold & current level of free blocks 
– Impact: suppress latency spikes 

 
 

 



Optimizing SSD Latency (3/4) 
• Mockup Grey Box Approach Experiment 

– Use multiple SSDs instead of SSD channels  
(Requires H/W resource visibility) 

– Latency sensitive & latency heavy I/O separation using replicas placed on 
redundant H/W resources 
(similar to read / write separation in Skourtis14)  

• [Skourtis14] D. Skourtis, et al, “Flash on Rails : Consistent Flash Performance through 
Redundancy”, ATC’14 

– GC control API enhanced SATA 6.0Gb/s SSDs provided by Samsung 
 

 
 

 
 

 

Latency spike suppression 
(Epoch based R/W/GC separation) 

Cutting the long tail 

Normal 
I/O Skourtis’14 

R/W separation 

Grey box 
Approach 



Optimizing SSD Latency (4/4) 

• Related Projects 
– [SDF] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF: 

Software-Defined Flash for Web-Scale Internet Storage Systems,” 
ASPLOS ’14 

– [Rails] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. 
Brandt, “Flash on Rails : Consistent Flash Performance through 
Redundancy,” ATC’14. 

– [HIOS] M. Jung, W. Choi, and S. Srikantaiah, “HIOS: A host interface 
I/O scheduler for Solid State Disks,” ISCA ’14 

– [PIQ] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha, 
“Exploiting parallelism in I/O scheduling for access conflict 
minimization in flash-based solid state drives,” MSST’14 



Challenges 

• So many specialized API instances? 
– Specialization leads to multiple instances of APIs 
– Need a way to lower the cost of API development 

and maintenance 

  
• Market Adoption, Business model etc. 

– Would there be a market large enough? 
– What is the killer application of the approach? 



Suggestions 

• Programmable SSDs 
– Define and develop a generic programmable SSD platform  

to enable easy SSD behavior modification 
• Ex> Willow (OSDI’14) UCSD 

– Similar to Nvidia CUDA GP-GPU platform, Apple iOS app platform,  
Android app platform 
 

• Looking for killer apps 
– “Provide a generic programmable SSD platform to the community” 
– Collective intelligence of multiple seed developer groups in the 

industry and the academia looking for killer apps 
(i.e., Open-Source SSD APIs) 

– Expect emerging abstractions, models and applications 
based on customer needs (industry) or research results (academia) 



Conclusion 
• Inefficient resource usage caused  

by the Black Box storage approach 
– Non-visible & non-accessible peer resources 

Conservative I/O strategies 
• Solution: Grey Box storage approach 

– SSD internals exposed to host S/W via I/Fs  
in a managed way  

• Case studies: 
– Host S/W can schedule resources to enhance the efficiency of 

the system  Feasible! 
• Future studies: 

– Looking for a reliable way to use Grey Box SSDs 



Thank You! 
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