
From Black Box to Grey Box:
Is it Feasible for Flash?

NVRAMOS’14
2014. 10. 31

Seoul National University

Prof. Heon Y. Yeom

New NVRAM Storage Systems

Response Time =
 Seek (10ms)
 + Rotational Delay (0.8ms)
 + Transfer Time

HDD

Flash Memory

Storage Class Memory

PCM
STT-MRAM

Ozone(O3): An out-of-order Flash memory Controller
Architecture, IEEE Trans. On Computes, May 2011.

Parallel Architecture

Ordinary Practice to Use SSD
“Storage as a Black Box”

Operating
System

Application

No modification to Software

Replacing the h/w only

Drop in
replacement:
“Free Lunch”
Performance

Unsatisfied Expectations

SSD

Application

Working hard for high
performance

Expecting customer
satisfaction

Can’t get the maximum
performance.

Was my investment worth it?

e.g.) OCZ Vertex3(60GB, SATA3, EMLC)
Vendor’s perf.: 60,000~85,000 (4KB IOPS)
Fio’s perf: 10,000~15,000 (4KB IOPS)

Application experienced performance

Vendor provided performance numbers

“Inefficient Resource Usage”

Application

OS Software

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Host I/F

SSD Controller

Host Controller

DRAM

Unexpected Performance Drop

Low Bandwidth Utilization

Low Resource Utilization

• Excessive round trips / low bandwidth
• Good-put vs Bad-put (I/O amplification)

• Unpredictable SSD performance
• Unexpected performance degradation
• OS Software overhead

• Unpredictable application behavior
• Bad I/O patterns (bad cache / prefetch hits)
• Low parallelism, hot spots / collisions

“Inefficient Resource Usage”

Application

OS Software

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Host I/F

SSD Controller

Host Controller

DRAM

Unexpected Performance Drop

Low Bandwidth Utilization

Low Resource Utilization

• Excessive round trips / low bandwidth
• Good-put vs Bad-put (I/O amplification)

• Unpredictable SSD performance
• Unexpected performance degradation
• OS Software overhead

• Unpredictable application behavior
• Bad I/O patterns (bad cache / prefetch hits)
• Low parallelism, hot spots / collisions

Storage is still a “Black Box”
Category “SCSI”, “SAS” “SATA” “NVM-e”

Physical Interface SAS, FC, PCI-e, SATA* SATA, PCI-e* Not specified*

Scope FF, Phy, Link, Transport,
Reg. level I/F, Command

protocol
Programming arch.

FF, Phy, Link, Transport,
Command protocol

Reg. level I/F,
Command protocol

Target Devices Tape, Printer, Storage array,
Object Storage, CD/DVD,

HDD, SSD, and more

CD-ROM
(ejectable media),

HDD, SSD

PCI-e SSD,
Next generation memory

Register level I/F Vendor specific,
SCSI Express*

AHCI NVM-Express

Command Protocol SCSI command set
(SCC,SPC

ATA-8/ATAPI
command set

NVM-Express
command set

Available
Abstractions
(in standard)

• (remote) Sequential /
Random Access Block
Space

• Cache, Buffers
• Queue

(SCSI-express only)

• etc: Speaker, Tape,
Stream, and more…

• Random Access
Block Space

• Cache (+NVCache)
• Queue (short)
• Interrupts (MSI/MSI-x)

• etc: power ctrl,

swappable media,
monitor(SMART),
NVRAM (firmware)

• Random Access
Block Space

• Cache
• Queue Pairs

(deep, multi)
• Interrupts (MSI/MSI-x)

• etc: power ctrl, NVRAM

(firmware),
metadata/LBA (OOB),
etc…

Storage is still a “Black Box”
Category “SCSI”, “SAS” “SATA” “NVM-e”

Physical Interface SAS, FC, PCI-e, SATA* SATA, PCI-e* Not specified*

Scope FF, Phy, Link, Transport,
Reg. level I/F, Command

protocol
Programming arch.

FF, Phy, Link, Transport,
Command protocol

Reg. level I/F,
Command protocol

Target Devices Tape, Printer, Storage array,
Object Storage, CD/DVD,

HDD, SSD, and more

CD-ROM
(ejectable media),

HDD, SSD

PCI-e SSD,
Next generation memory

Register level I/F Vendor specific,
SCSI Express*

AHCI NVM-Express

Command Protocol SCSI command set
(SCC,SPC

ATA-8/ATAPI
command set

NVM-Express
command set

Available
Abstractions
(in standard)

• (remote) Sequential /
Random Access Block
Space

• Cache, Buffers
• Queue

(SCSI-express only)

• etc: Speaker, Tape,
Stream, and more…

• Random Access
Block Space

• Cache (+NVCache)
• Queue (short)
• Interrupts (MSI/MSI-x)

• etc: power ctrl,

swappable media,
monitor(SMART),
NVRAM (firmware)

• Random Access
Block Space

• Cache
• Queue Pairs

(deep, multi)
• Interrupts (MSI/MSI-x)

• etc: power ctrl, NVRAM

(firmware),
metadata/LBA (OOB),
etc…

Target Domain: Smaller Scope (Specialized)
(Standard & target devices get coupled)

Abstractions: Storage is always a black box
Random access block space with caches & queues

SSD Behavioral
Model

Host
S/W

I/O control

I/O latency / throughput

Application Behavioral
Model

Device
Firmware

Resource Allocation
Results (performance)

I/O access pattern

Towards Resource Efficiency?
“Model based Control”

SSD Behavioral
Model

Host
S/W

I/O control

I/O latency / throughput

Application Behavioral
Model

Device
Firmware

Resource Allocation
Results (performance)

I/O access pattern

Towards Resource Efficiency?
“Model based Control”

Solution: “Open Up!!”
Grey Box Approach with SSDs

• SSD internals exposed to host S/W via I/Fs
– Provides means of visibility of peer resources
– Provides means of access to peer resources
– via well defined interfaces

• In a managed way

– Resources abstracted at a proper level to hide
proprietary details while providing flexibility

– Preserve security, robustness, orthogonality

Grey Box Approach with SSDs

Flexible
Rigid

Insecure Secure

Black
Box
SSD

Grey
Box
SSD

Grey
Box
SSD

Grey
Box
SSD

Func. 1

Func. 2

Chip. 0-0
Chip. 1-0

All
Open

Read(LBA,size)
Write(LBA,size)

Flexibility for the sake of efficient resource usage
Appropriate level of abstraction to protect proprietary details

What to Expose?

GC scheduler

Pre-fetcher

Channels

Resource Model: GC thresholds

Application Model (code): Read stream context

Resource Model:
 read(), write(), erase() timings
 per channel block mapping

Examples>

High lvl.

Low lvl.

Misc. operations

Resource info
(Resource Behavioral Model)
Application info
(Application model)

Set of operations (API)

Interface defined for
Abstracted Resources

Application

OS Software

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

F
l
a
s
h
C
h
i
p

Host I/F

SSD
Controller

Host
Controller

Abstracted
Resource

Case Studies:
Towards Efficient Resource Utilization

w/ the Grey Box Approach

• Optimizing I/O completion
• Optimizing DB Transaction I/O
• Optimizing on-storage graph traversal
• Optimizing SSD latency
• SSD cache prefetching
• Multi-streamed SSD
• Computation offloading

(query processing, filters, compression & etc.)

Optimizing I/O Completion (1/3)

I/O command IRQ SoftIRQ

Application
Context

Application
Context

sleep

Device
response

time

Interrupt based I/O processing

Schedule delay

8~15us

2~3us

I/O command

Device
response

time

Busy wait
(polling)

Polling based I/O processing

Far less context switches leads to
efficient I/O processing

To Poll or to wait for an Interrupt

Assuming microsecond
range device response

time

Assuming microsecond
range device response

time

Optimizing I/O Completion (2/3)
• Problem with polling

– High CPU usage
– High bus utilization (frequent control register access)
– Low parallelism

• Dynamic poll
– D. Shin et al, “Dynamic Interval Polling and Pipelined Post I/O Processing for

Low-Latency Storage Class Memory,” HotStorage 2013
– Solves the problem of polling by predicting device response time

I/O command

Device
response

time

Dynamic Polling based I/O processing

Yield CPU
And wait

Busy wait
(polling)

Early wakeup
Based on the

Predicted
Device

response time
Predicted
wait time

Optimizing I/O Completion (2/3)
• Problem with polling

– High CPU usage
– High bus utilization (frequent control register access)
– Low parallelism

• Dynamic poll
– D. Shin et al, “Dynamic Interval Polling and Pipelined Post I/O Processing for

Low-Latency Storage Class Memory,” HotStorage 2013
– Solves the problem of polling by predicting device response time

I/O command

Device
response

time

Dynamic Polling based I/O processing

Yield CPU
And wait

Busy wait
(polling)

Early wakeup
Based on the

Predicted
Device

response time
Predicted
wait time

Optimizing I/O Completion (3/3)
• Grey Box Approach

– Idea: The SSD explicitly informs the OS software for the I/O completion
– Method: Piggy back the tag and time left for the

next I/O completion on each I/O
– Behavioral model: “Best effort time to completion”

• Based on information of I/O requests in the completion queue
• Inform the next I/O processor to prepare next I/O completion

– Interface:
• Piggy backed info: “Time to next completion”

– Impact:
• Improves I/O processing latency & throughput

Completion
Prediction
Window

Next tag: none, IRQ

Next tag: 23, 15us Thread 0 Tag 31

Thread 1 Tag 23

Thread 2

Tag 17

Wakeup Thread1

Optimizing On-storage
Graph Traversal (1/2)

• On-storage graph traversal
– Read I/O on a series of blocks which have dependency

(i.e., i+1th block requires the ith block read)
– i.e., B-tree lookup, social graph traversal

• Problem
– Low parallelism

(cannot batch: can’t predict next move)
– Multiple round trips (flash reads) for graph traversal

Next:
Block83

Next:
None

Next:
Block72

Block0 Block72 Block83

Host I/F 3 round trips
from the host
for traversal
(linked list)

Optimizing On-storage
Graph Traversal (2/2)

• Grey Box Approach
– Idea: Inform SSD with the block traversal semantics
– Method: Trusted traversal code execution, or block format info
– Application Behavioral Model: Application block traversal logic

provided to the SSD
– Interface: Means to inform the SSD with the application logic

(trusted code?)
– Impact: less round trips  latency reduction

Next:
Block83

Next:
None

Next:
Block72

Block0 Block72 Block83

Host I/F

1 round trip
from the host
for traversal
(linked list)

Optimizing DB Transaction I/O (1/3)

• Problems with current storage with transactions
– Current storages are not ‘stable’: should avoid partial writes
– Current storages do not guarantee ‘durability / order’ on the common

case: durable writes require multiple costly cache flushes
– Multiple writes (write amplification / multiple round trips) required to

preserve both ‘stable’, ‘durable’ and ‘order’ properties

• Transactions with flash SSDs?
– Implementing a ‘stable’ storage with flash SSDs can be efficient:

append only writes (out of place updates)
– Can simplify DB storage engine designs w/ transactional support

Optimizing DB Transaction I/O (2/3)
• Grey Box Approach

– Idea: Let SSDs have transactional support
– Method: SSDs provide transactional features and guarantees
– Application Model: ACID properties on writes, WAL semantics, commit

protocol
– Interface: atomic write, begin_tx, end_tx, abort & etc…
– Impact: less round trips, less writes, efficient storage usage (append only)

write() fsync() write() fsync() write() fsync()

e.g., InnoDB write protocol:
 3 writes & fsyncs for an update
 6 round trips

Redo log
WAL

Double Write
Buffer

Media
Data-block

update

SSD

Host

Flush

begin_tx() end_tx() write_atomic(tid)

I/O to a transactional SSD
 1 atomic write w/ tx begin&end
 3 round trips

Transactional
SSD

Host

ACID guarantees from SSDs

Optimizing DB Transaction I/O (3/3)

• Related Systems
– [TxFlash] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional

flash,”, OSDI’08

– [AtomicWrites] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
Panda, “Beyond block I/O: Rethinking traditional storage primitives,”
HPCA’11

– [LightTx] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A lightweight
transactional design in flash-based SSDs to support flexible transactions,”
ICCD’13

– [Mobius] W. Shi, D. Wang, Z. Wang, and D. Ju, “Mobius : A High
Performance Transactional SSD with Rich Primitives,” MSST’14

Optimizing SSD Latency (1/4)

• Problem with resource collisions
– Reads, Writes, GC (valid page copy & erase)
– I/O operations colliding on

SSD internal channels, chips, dies and planes
– Uncontrollable & unexpected latency spikes

• Long tail latency of SSDs

• Cause: Non-visibility & non-accessible SSD internals
– Cannot control when to trigger GC operations
– Cannot see which channel is idle

Optimizing SSD Latency (2/4)

• Grey Box Approach
– Idea: Have the application explicitly schedule I/O & GC operations on

multiple channels
– Method: Expose GC & I/O operations w/ queue abstractions on each

channels, data replicated on distinct channels (2 replicas)
– Model: GC initiating threshold & current level of free blocks
– Impact: suppress latency spikes

Optimizing SSD Latency (3/4)
• Mockup Grey Box Approach Experiment

– Use multiple SSDs instead of SSD channels
(Requires H/W resource visibility)

– Latency sensitive & latency heavy I/O separation using replicas placed on
redundant H/W resources
(similar to read / write separation in Skourtis14)

• [Skourtis14] D. Skourtis, et al, “Flash on Rails : Consistent Flash Performance through
Redundancy”, ATC’14

– GC control API enhanced SATA 6.0Gb/s SSDs provided by Samsung

Latency spike suppression
(Epoch based R/W/GC separation)

Cutting the long tail

Normal
I/O Skourtis’14

R/W separation

Grey box
Approach

Optimizing SSD Latency (4/4)

• Related Projects
– [SDF] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF:

Software-Defined Flash for Web-Scale Internet Storage Systems,”
ASPLOS ’14

– [Rails] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S.
Brandt, “Flash on Rails : Consistent Flash Performance through
Redundancy,” ATC’14.

– [HIOS] M. Jung, W. Choi, and S. Srikantaiah, “HIOS: A host interface
I/O scheduler for Solid State Disks,” ISCA ’14

– [PIQ] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha,
“Exploiting parallelism in I/O scheduling for access conflict
minimization in flash-based solid state drives,” MSST’14

Challenges

• So many specialized API instances?
– Specialization leads to multiple instances of APIs
– Need a way to lower the cost of API development

and maintenance

• Market Adoption, Business model etc.

– Would there be a market large enough?
– What is the killer application of the approach?

Suggestions

• Programmable SSDs
– Define and develop a generic programmable SSD platform

to enable easy SSD behavior modification
• Ex> Willow (OSDI’14) UCSD

– Similar to Nvidia CUDA GP-GPU platform, Apple iOS app platform,
Android app platform

• Looking for killer apps
– “Provide a generic programmable SSD platform to the community”
– Collective intelligence of multiple seed developer groups in the

industry and the academia looking for killer apps
(i.e., Open-Source SSD APIs)

– Expect emerging abstractions, models and applications
based on customer needs (industry) or research results (academia)

Conclusion
• Inefficient resource usage caused

by the Black Box storage approach
– Non-visible & non-accessible peer resources

Conservative I/O strategies
• Solution: Grey Box storage approach

– SSD internals exposed to host S/W via I/Fs
in a managed way

• Case studies:
– Host S/W can schedule resources to enhance the efficiency of

the system  Feasible!
• Future studies:

– Looking for a reliable way to use Grey Box SSDs

Thank You!

	From Black Box to Grey Box:�Is it Feasible for Flash?
	New NVRAM Storage Systems
	Ordinary Practice to Use SSD�“Storage as a Black Box”
	Unsatisfied Expectations
	“Inefficient Resource Usage”
	“Inefficient Resource Usage”
	Storage is still a “Black Box”
	Storage is still a “Black Box”
	Towards Resource Efficiency? �“Model based Control”
	Towards Resource Efficiency? �“Model based Control”
	Solution: “Open Up!!”�Grey Box Approach with SSDs
	Grey Box Approach with SSDs
	What to Expose?
	Case Studies: �Towards Efficient Resource Utilization �w/ the Grey Box Approach
	Optimizing I/O Completion (1/3)
	Optimizing I/O Completion (2/3)
	Optimizing I/O Completion (2/3)
	Optimizing I/O Completion (3/3)
	Optimizing On-storage �Graph Traversal (1/2)
	Optimizing On-storage �Graph Traversal (2/2)
	Optimizing DB Transaction I/O (1/3)
	Optimizing DB Transaction I/O (2/3)
	Optimizing DB Transaction I/O (3/3)
	Optimizing SSD Latency (1/4)
	Optimizing SSD Latency (2/4)
	Optimizing SSD Latency (3/4)
	Optimizing SSD Latency (4/4)
	Challenges
	Suggestions
	Conclusion
	Thank You!

