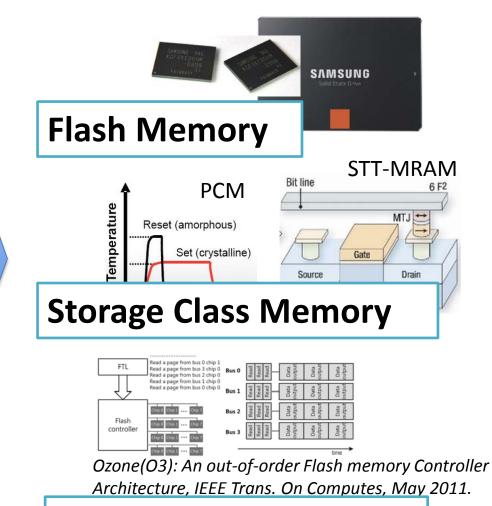
From Black Box to Grey Box: Is it Feasible for Flash?

NVRAMOS'14 2014. 10. 31

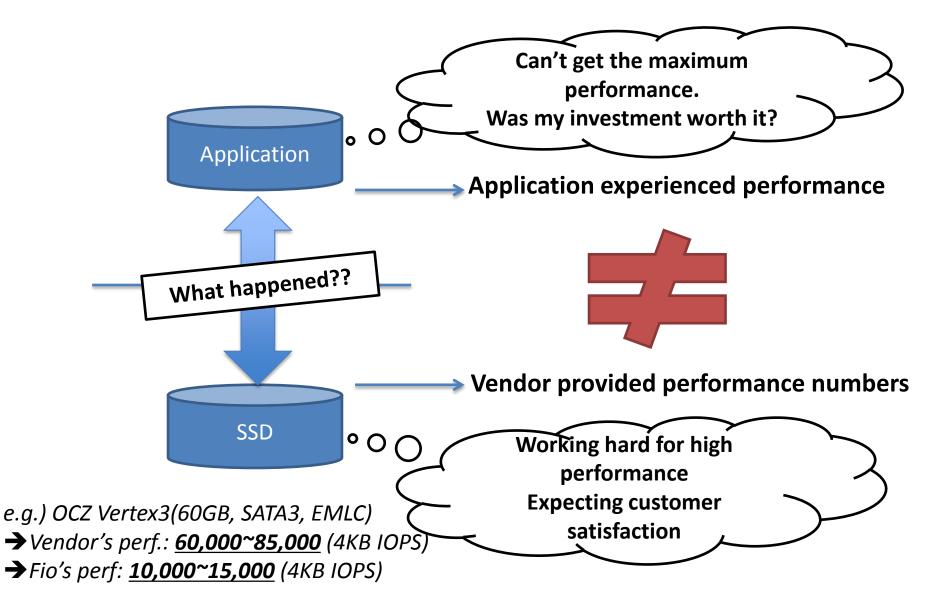
Seoul National University Prof. Heon Y. Yeom


New NVRAM Storage Systems

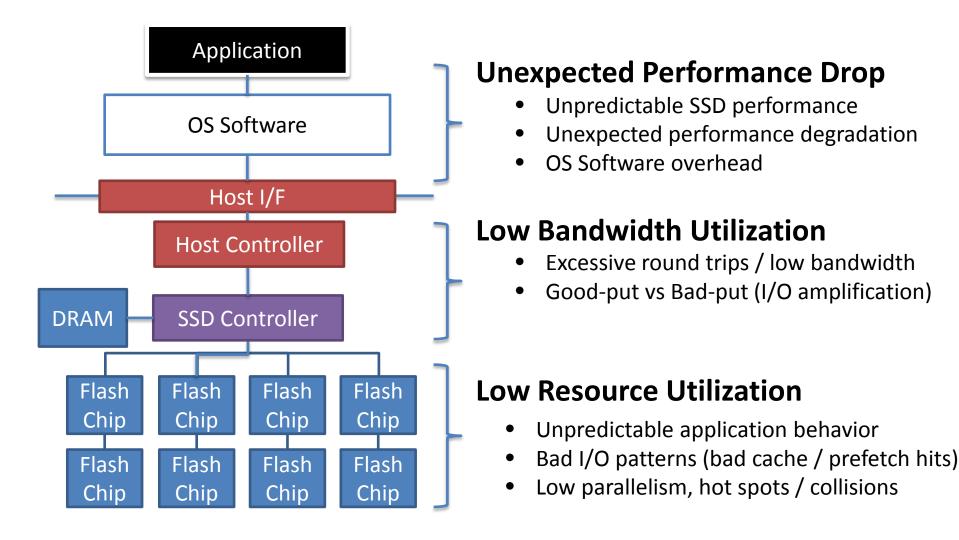
HDD

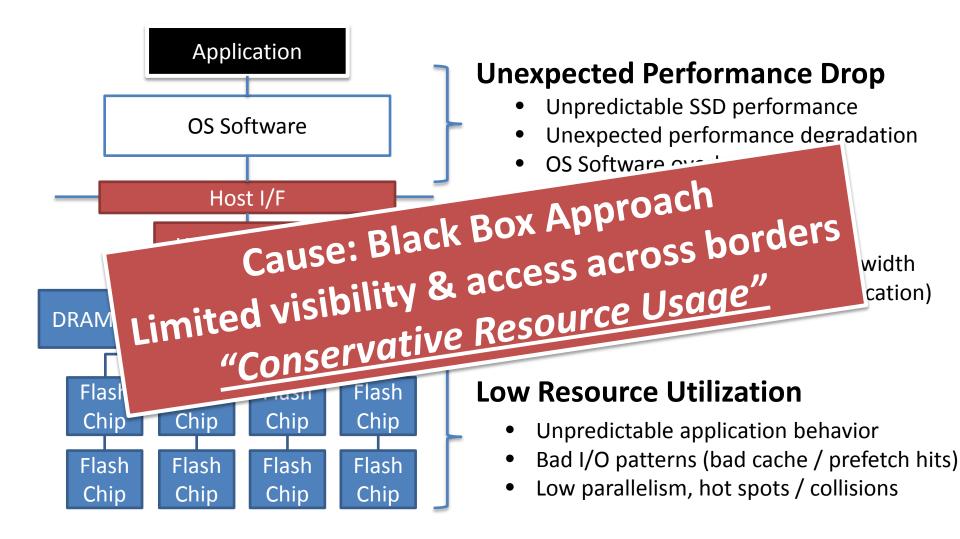
Response Time = Seek (10ms)

- + Rotational Delay (0.8ms)
- + Transfer Time


Parallel Architecture

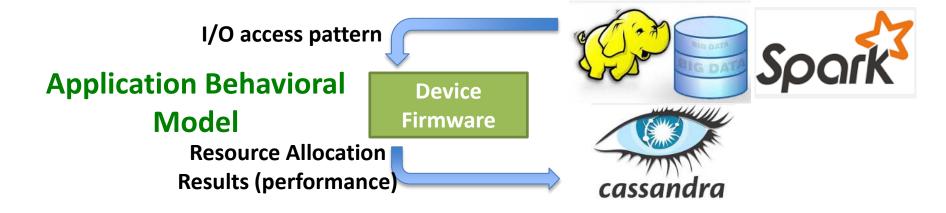
Ordinary Practice to Use SSD "Storage as a Black Box"

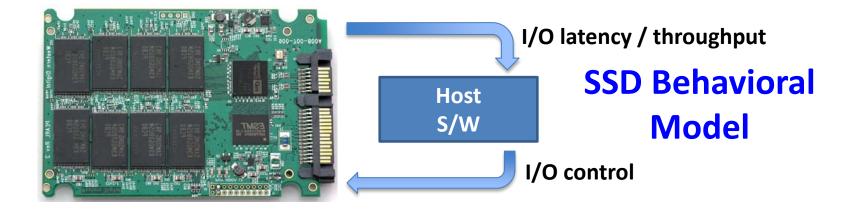

No modification to Software


Unsatisfied Expectations

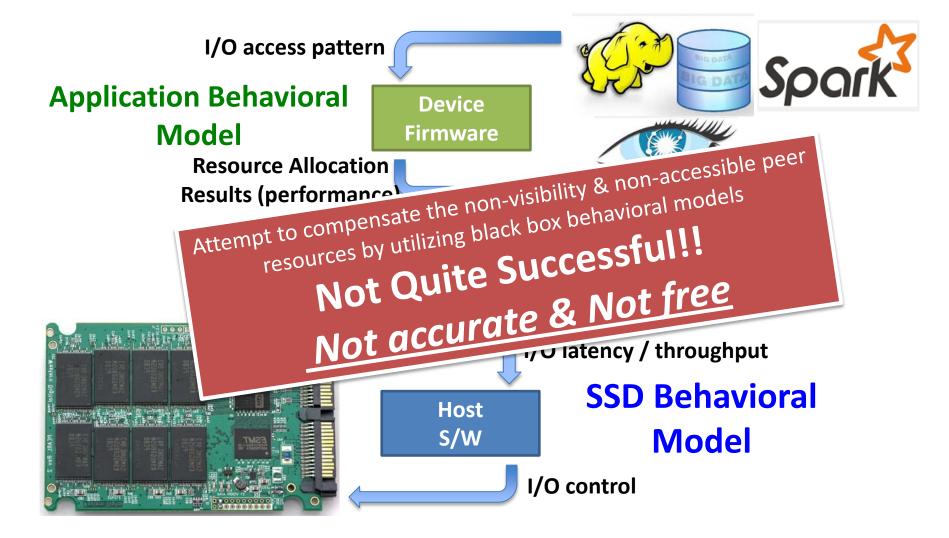
"Inefficient Resource Usage"

"Inefficient Resource Usage"

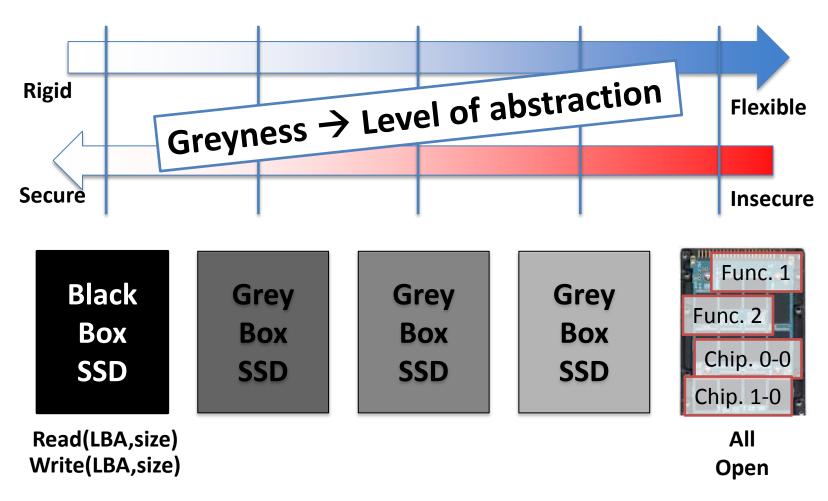

Storage is still a "Black Box"


	Category	"SCSI", "SAS"	"SATA"	"NVM-e"
	Physical Interface	SAS, FC, PCI-e, SATA*	SATA, PCI-e [*]	Not specified*
	Scope arget Domain	FF, Phy, Link, Transport, Reg. level I/F, Command protocol Programming arch.	FF, Phy, Link, Transport, Command protocol	Reg. level I/F, Command protocol
	Target Devices	Tape, Printer, Storage array, Object Storage, CD/DVD, HDD, SSD, and more	CD-ROM (ejectable media), HDD, SSD	PCI-e SSD, Next generation memory
	Register level I/F	Vendor specific, SCSI Express [*]	AHCI	NVM-Express
	Command Protocol	SCSI command set (SCC,SPC	ATA-8/ATAPI command set	NVM-Express command set
	Available Abstractions (in standard)	 (<u>remote</u>) <u>Sequential</u> / <u>Random</u> Access Block Space Cache, Buffers <u>Queue</u> (<u>SCSI-express only</u>) etc: Speaker, Tape, Stream, and more 	 Random Access Block Space Cache (+NVCache) Queue (short) Interrupts (MSI/MSI-x) etc: power ctrl, swappable media, monitor(SMART), NVRAM (firmware) 	 Random Access Block Space Cache Queue Pairs (<u>deep, multi</u>) Interrupts (MSI/MSI-x) etc: power ctrl, NVRAM (firmware), metadata/LBA (OOB), etc

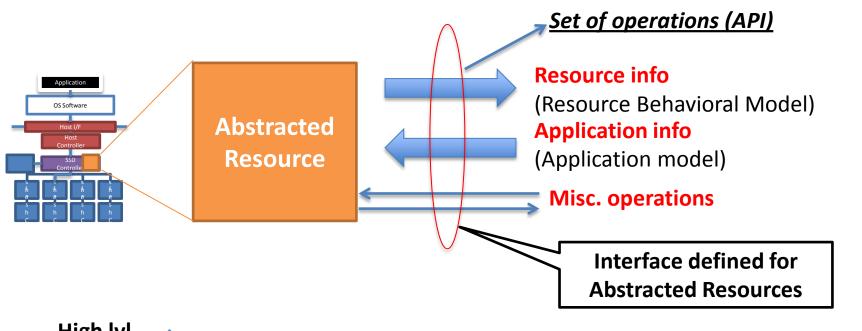
Storage is still a "Black Box"

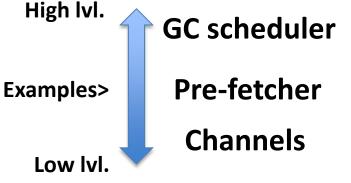

	Category	"SCSI", "SAS"	"SATA"	"NVM-e"
Г	Physical Interface	SAS, FC, PCI-e, SATA [*]	SATA, PCI-e [*]	Not specified*
Та	Scope arget Domain	Due europe	FF, Phy, Link, Transport, Command protocol Oomain: Smaller Scope (Stard & target devices get	
1	Target Devices	Tape, Printer, Storage array, Object Storage, CD/DVD, HDD, SSD, and more	CD-КОМ (ejectable media), HDD, SSD	PCI- D, Next generation memory
	Register level I/F	Vendor specific, SCSI Express [*]	AHCI	NVM-Express
	Command Protocol	SCSI command set (SCC,SPC	ATA-8/ATAPI command set	NVM-Express command set
	Available Abstractions (in standard)		 Random Access Block Space Cache (+NVCache) Queue (short) ons: Storage is always a ess block space with cac 	
		 etc: Speaker, Tape, Stream, and more 	swappable media, monitor(SMART), NVRAM (firmware)	 etc: powe rfl, NVRAM (firmware), metadata/LBA (OOB), etc

Towards Resource Efficiency? "Model based Control"


Towards Resource Efficiency? "Model based Control"

Solution: "Open Up!!" Grey Box Approach with SSDs

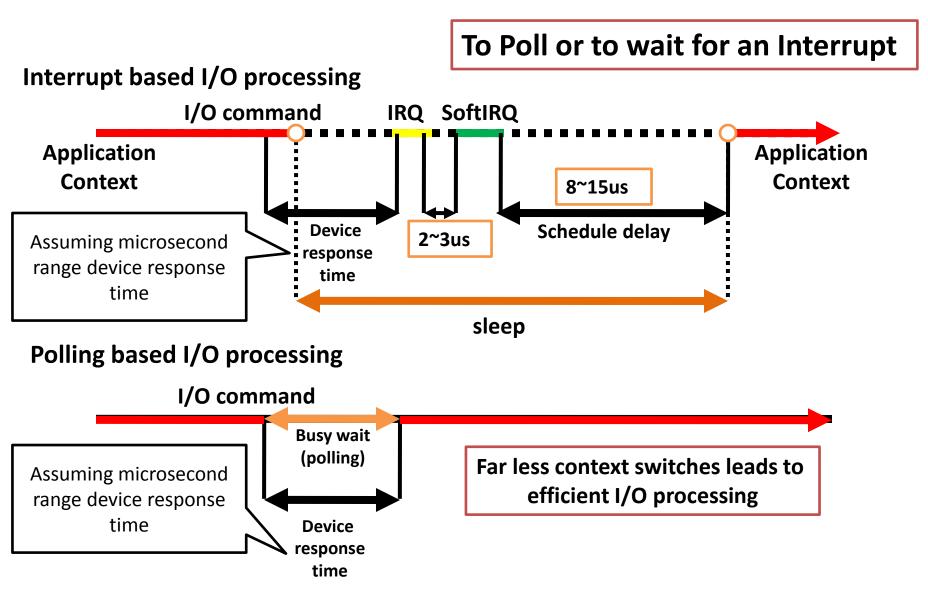

- SSD internals exposed to host S/W via I/Fs
 - Provides means of visibility of peer resources
 - Provides means of access to peer resources
 - via well defined interfaces
- In a managed way
 - Resources <u>abstracted at a proper level</u> to <u>hide</u> proprietary details</u> while <u>providing flexibility</u>
 - Preserve security, robustness, orthogonality


Grey Box Approach with SSDs

Flexibility for the sake of efficient resource usage Appropriate level of abstraction to protect proprietary details

What to Expose?

Resource Model: GC thresholds

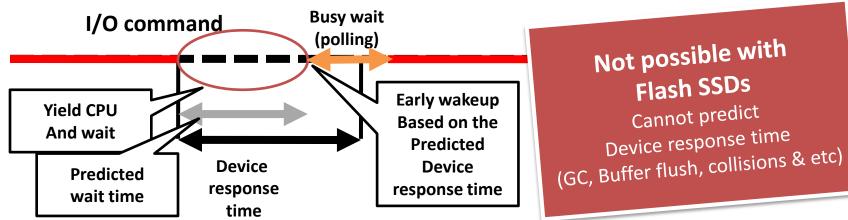

Application Model (code): Read stream context

Resource Model: read(), write(), erase() timings per channel block mapping

Case Studies: Towards Efficient Resource Utilization w/ the Grey Box Approach

- Optimizing I/O completion
- Optimizing DB Transaction I/O
- Optimizing on-storage graph traversal
- Optimizing SSD latency
- SSD cache prefetching
- Multi-streamed SSD
- Computation offloading (query processing, filters, compression & etc.)

Optimizing I/O Completion (1/3)

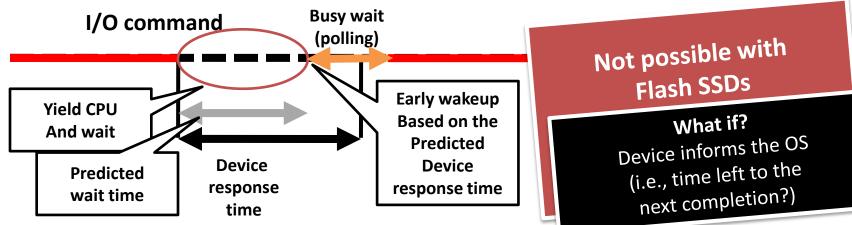


Optimizing I/O Completion (2/3)

• Problem with polling

- High CPU usage
- High bus utilization (frequent control register access)
- Low parallelism
- Dynamic poll
 - D. Shin et al, "Dynamic Interval Polling and Pipelined Post I/O Processing for Low-Latency Storage Class Memory," HotStorage 2013
 - Solves the problem of polling by predicting device response time

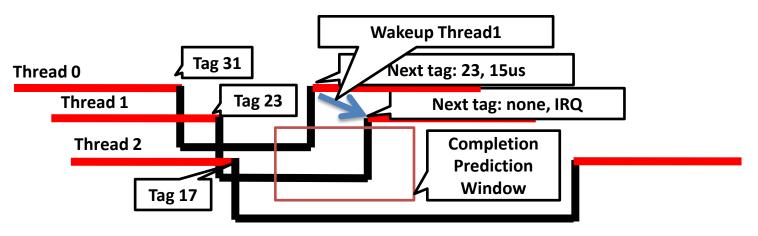
Dynamic Polling based I/O processing



Optimizing I/O Completion (2/3)

• Problem with polling

- High CPU usage
- High bus utilization (frequent control register access)
- Low parallelism
- Dynamic poll
 - D. Shin et al, "Dynamic Interval Polling and Pipelined Post I/O Processing for Low-Latency Storage Class Memory," HotStorage 2013
 - Solves the problem of polling by predicting device response time


Dynamic Polling based I/O processing

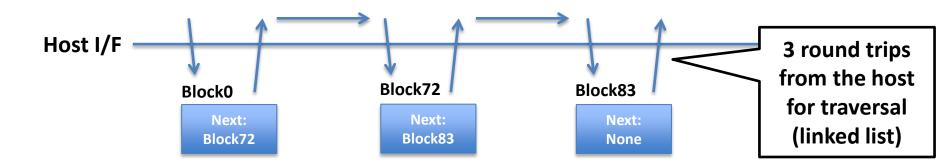
Optimizing I/O Completion (3/3)

Grey Box Approach

- Idea: The SSD explicitly informs the OS software for the I/O completion
- Method: Piggy back the tag and time left for the next I/O completion on each I/O
- Behavioral model: "Best effort time to completion"
 - Based on information of I/O requests in the completion queue
 - Inform the next I/O processor to prepare next I/O completion
- Interface:
 - Piggy backed info: "Time to next completion"
- Impact:
 - Improves I/O processing latency & throughput

Optimizing On-storage Graph Traversal (1/2)

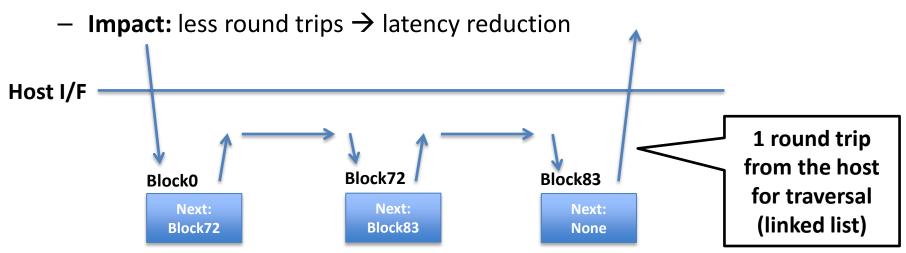
On-storage graph traversal


- Read I/O on a series of blocks which have dependency (i.e., i+1th block requires the ith block read)
- i.e., B-tree lookup, social graph traversal

Problem

Low parallelism

(cannot batch: can't predict next move)

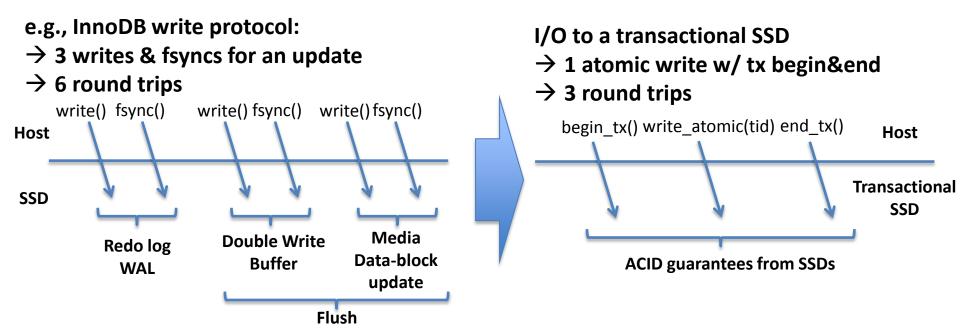

Multiple round trips (flash reads) for graph traversal

Optimizing On-storage Graph Traversal (2/2)

Grey Box Approach

- Idea: Inform SSD with the block traversal semantics
- Method: Trusted traversal code execution, or block format info
- Application Behavioral Model: Application block traversal logic provided to the SSD
- Interface: Means to inform the SSD with the application logic (trusted code?)

Optimizing DB Transaction I/O (1/3)


- Problems with current storage with transactions
 - Current storages are not 'stable': <u>should avoid partial writes</u>
 - Current storages do not guarantee 'durability / order' on the common case: <u>durable writes require multiple costly cache flushes</u>
 - Multiple writes (write amplification / multiple round trips) required to preserve both 'stable', 'durable' and 'order' properties

• Transactions with flash SSDs?

- Implementing a 'stable' storage with flash SSDs can be efficient: append only writes (out of place updates)
- Can simplify DB storage engine designs w/ transactional support

Optimizing DB Transaction I/O (2/3)

- Grey Box Approach
 - Idea: Let SSDs have transactional support
 - Method: SSDs provide transactional features and guarantees
 - Application Model: ACID properties on writes, WAL semantics, commit protocol
 - Interface: atomic write, begin_tx, end_tx, abort & etc...
 - Impact: less round trips, less writes, efficient storage usage (append only)

Optimizing DB Transaction I/O (3/3)

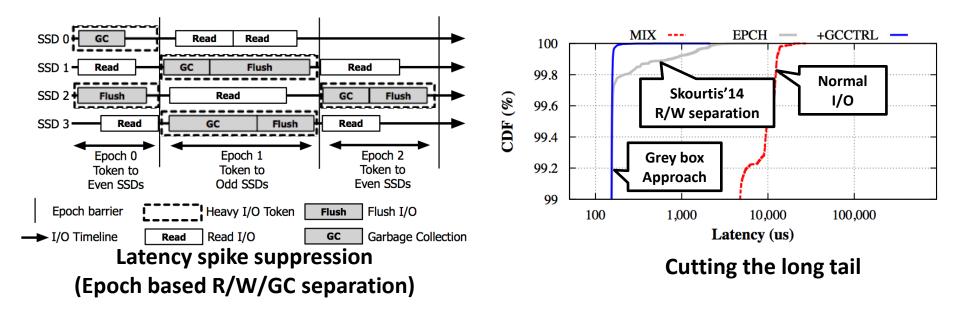
Related Systems

- [TxFlash] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, <u>"Transactional</u> <u>flash,"</u>, OSDI'08
- [AtomicWrites] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
 Panda, <u>"Beyond block I/O: Rethinking traditional storage primitives,"</u> HPCA'11
- [LightTx] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, <u>"LightTx: A lightweight</u> transactional design in flash-based SSDs to support flexible transactions," ICCD'13
- [Mobius] W. Shi, D. Wang, Z. Wang, and D. Ju, <u>"Mobius : A High</u> <u>Performance Transactional SSD with Rich Primitives,"</u> MSST'14

Optimizing SSD Latency (1/4)

- Problem with resource collisions
 - Reads, Writes, GC (valid page copy & erase)
 - I/O operations colliding on
 SSD internal channels, chips, dies and planes
 - Uncontrollable & unexpected latency spikes
 - Long tail latency of SSDs
- Cause: Non-visibility & non-accessible SSD internals
 - Cannot control when to trigger GC operations
 - Cannot see which channel is idle

Optimizing SSD Latency (2/4)


• Grey Box Approach

- Idea: Have the application explicitly schedule I/O & GC operations on multiple channels
- Method: Expose GC & I/O operations w/ queue abstractions on each channels, data replicated on distinct channels (2 replicas)
- Model: GC initiating threshold & current level of free blocks
- Impact: suppress latency spikes

Optimizing SSD Latency (3/4)

Mockup Grey Box Approach Experiment

- Use multiple SSDs instead of SSD channels (Requires H/W resource visibility)
- Latency sensitive & latency heavy I/O separation using replicas placed on redundant H/W resources (similar to read / write separation in Skourtis14)
 - [Skourtis14] D. Skourtis, et al, "Flash on Rails : Consistent Flash Performance through Redundancy", ATC'14
- GC control API enhanced SATA 6.0Gb/s SSDs provided by Samsung

Optimizing SSD Latency (4/4)

• Related Projects

- [SDF] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, <u>"SDF:</u> <u>Software-Defined Flash for Web-Scale Internet Storage Systems,"</u> ASPLOS '14
- [Rails] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. Brandt, <u>"Flash on Rails : Consistent Flash Performance through</u> <u>Redundancy,"</u> ATC'14.
- [HIOS] M. Jung, W. Choi, and S. Srikantaiah, <u>"HIOS: A host interface</u>
 <u>I/O scheduler for Solid State Disks,"</u> ISCA '14
- [PIQ] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha, <u>"Exploiting parallelism in I/O scheduling for access conflict</u> <u>minimization in flash-based solid state drives,"</u> MSST'14

Challenges

- So many specialized API instances?
 - Specialization leads to multiple instances of APIs
 - Need a way to lower the cost of API development and maintenance

- Market Adoption, Business model etc.
 - Would there be a market large enough?
 - What is the killer application of the approach?

Suggestions

• Programmable SSDs

- Define and develop a generic programmable SSD platform to enable easy SSD behavior modification
 - Ex> Willow (OSDI'14) UCSD
- Similar to Nvidia CUDA GP-GPU platform, Apple iOS app platform, Android app platform

• Looking for killer apps

- <u>"Provide a generic programmable SSD platform to the community"</u>
- <u>Collective intelligence</u> of multiple <u>seed developer groups</u> in the <u>industry</u> and the <u>academia</u> looking for killer apps (i.e., Open-Source SSD APIs)
- Expect emerging abstractions, models and applications
 based on customer needs (industry) or research results (academia)

Conclusion

- Inefficient resource usage caused by the Black Box storage approach
 - Non-visible & non-accessible peer resources
 Conservative I/O strategies
- Solution: Grey Box storage approach
 - SSD internals exposed to host S/W via I/Fs in a managed way
- Case studies:
 - Host S/W can schedule resources to enhance the efficiency of the system → <u>Feasible!</u>
- Future studies:
 - Looking for a reliable way to use Grey Box SSDs

Thank You!