SHARDS & Talus:
Online MRC estimation and optimization
for very large caches

Nohhyun Park

CloudPhysics, Inc.

Introduction

* Efficient MRC Construction with SHARDS — FAST’15 Waldspurger at al.

 Talus: A simple way to remove cliffs in cache performance — HPCA’15
Beckmann and Sanchez

 Two complementary techniques that improves cache performance

* Both techniques rely on same finding.

SHARDS

Efficient MRC Construction with SHARDS

Miss Ratio

Modeling Cache Performance

0.8

0.6

0.4 -

0.2 -

0.0

5

10
Cache Size (GB)

15

20

* Miss Ratio Curve (MRC)
* Performance as f(size)
* Working set knees
* Inform allocation policy

e Reuse distance

* Unique intervening blocks between
use and reuse

* LRU, stack algorithms

Motivation

* Cache partitioning.

* Simulation of various cache parameters.
* Cache block size, write handling, shadow partition

* Workload partitioning.
* By IO meta information (10 size, filesystem info, etc.)

* Problem: requires online modeling expensive
* Too resource-intensive to be broadly practical
* Exacerbated by increasing cache sizes

MRC Algorithm Research

« separate simulation
per cache size

_ Kessler, Hill &
Mattson Stack Algorithm Wood
single pass set, time sampling

O(M), O(NM)

1970 1975 1980 1985 1990 1995

SHARDS
Spatial hashing
UMON-DSS O(1). O(N)
hw set sampling PARDA
parallelism

2000 2005 2010 2015

Bennett & Kruskal

balanced tree ?'kenf | f
O(N), O(N log N) ree of unique refs
O(M), O(N log M)

Space, Time Complexity
N = total refs, M = unique refs

Bryan & Conte Counter Stacks
cluster sampling probabilistic counters
O(log M), O(N log M)
RapidMRC

on-off periods

Key Idea

 Random spatial sampling results in a smilar MRC scaled by the
sampling rate.

—— Original
— Sample rate p=1/3

Cache size (MB)

Spatially Hashed Sampling

randomize sample?

yes
—s process

e A ”Ol
hash(L;) mod P

skip
sampled unsampled
Y, — samplingrateR=T/P
- - subsetinclusion property
O P maintained as R is lowered

adjustable threshold

Basic SHARDS

randomize sample? compute distance scale up
ﬁ — =R
r- ¥ aghed R Y Ron! .
hash(L;) mod P l,
skip

Each sample statistically represents 1 /R blocks
Scale up reuse distances by same factor

SHARDS in Constant Space

randomize sample? compute distance scale up
2 yes
gt — T oé — +R
hash(L,) mod P
sample set

evict samples to bound set size

,Tmax
o ! P
T

lower threshold T=T,,.,
reducesrateR=T/P

Miss Ratio

Example SHARDS MRCs

Sample Size (Smax)
— Exact MRC

-+ 32K
—-8K

Cache Size (GB)

* Block I/O trace t04
* Production VM disk
* 69.5M refs, 5.2M unique

* Sample size s, ,,
e Vary from 128 to 32K
* S.ax 2 2K very accurate

* Small constant footprint
* SHARDS,; adjustment

Experimental Evaluation

* Data collection

» SaaS caching analytics

 Remotely stream VMware vscsiStats
e 124 trace files

* 106 week-long traces CloudPhysics
' customers

e 12 MSR and 6 FIU traces SNIA IOTTA
* LRU, 16 KB block size

CLO HYSICS

Collector vApp -

ESX
KVM

Exact MRCs vs. SHARDS

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%)
1.0 -
0.5- L\“*‘\wg \\““‘““‘\~\k___§\
OO - 1 1 1 1 .
0 40 80 0 500 1000 200
t06 (0.33%) t08 (0.04%) t14 (0.38%)
o 1.0-
K ’
T 5 - !
2
=
00 - 1 1 1 1 1 1 1 1 1 1
0 50 100 0 300 600 0 100 200 300
t18 (0.08%) (0.06%) t30 (0.06%)
1.0 -
0.5 - \-__\——___—__\1\. l‘\~\~\\"“~—~1‘h‘j\
0.0, | |
0 100 200 O 200 400 1 OO 200 300
Cache Slze (GB)

— Smax = 8K ---- exact MRC

t01 (0.05%)
1 1 1
0 200 400
t15 (0.10%)
1 1 1
0 200 400

t32 (0.98%)

18

Error Analysis

 Mean Absolute Error (MAE)

0.10 -

* | exact — approx|
0.09 -

* Average over all cache sizes
0.08 -

e Full set of 124 traces
*Error«< 1/Vs, .,

* MAE fors,., = 8K
* 0.0027 median
* 0.0171 worst-case

Mean Absolute Error (MAE)
© © © o o o
o o o o o o
N w N (&) » ~

Iii;%;

Ooo_ I | 1 T = T g = I——

I I I I I I I I
256 512 1K 2K 4K 8K 16K 32K
Sample Size (Smax)

Memory Footprint

e Full set of 124 traces
* Sequential PARDA
* Basic SHARDS

100000

7 S Sens P * Modified PARDA
10000 | SHARDS fi=0001 oo .

] max * Memory = R x baseline for larger
1000 traces

* Fixed-size SHARDS
* New space-efficient code
* Constant 1 MB footprint

100 H.
\

Memory Usage (MB)

10 %, y

14

01 T T T T T T
0 20 40 60 80 100 120
Trace Number

Processing Time

e Full set of 124 traces
* Sequential PARDA
* Basic SHARDS

100000 -
ﬁ S Sehmpsamples) * Modified PARDA
10000 SHARDS R=0.001 =----
ﬁ L R * R=0.001 speedup 41-1029x
—~ 1000 4
8 * Fixed-size SHARDS
g 11 -
S k. * New space-efficient code
10 4,";’""?" T . .
R * Overhead for evictions
14 ‘-{\\);."N e — —
] .‘":'L:‘!.'.-{ ' .':"‘ l: v\(‘h" ;“) Smax_ 8K SpeEdup 6 204)(
0.1+ S A
| ;
0.01 i

T T T T T
0 20 40 60 80 100 120
Trace Number

Generalizing to Non-LRU Policies

* Many sophisticated replacement policies
* ARC, LIRS, CAR, CLOCK-Pro, ...
* Adaptive, frequency and recency
* No known single-pass MRC methods!

* Solution: efficient scaled-down simulation
* Filter using spatially hashed sampling
* Scale down simulated cache size by sampling rate
* Run full simulation at each cache size

 Surprisingly accurate results

Scaled-Down Simulation Examples

ARC — MSR-Web Trace

Miss Ratio

0.8 -

0.6 -

0.4 -

0.2 4

Sampled R=0.010 ———
Sampled R=0.001 — — -
Exact ARC ---.--

T
20

0 40 5 60 70 80
Cache Size (GB)

CLOCK-Pro — Trace t04

Miss Ratio

0.8

0.7 4

0.6 -

0.5 4

0.4 -

0.3 4

0.2 4

0.1

Sampled R=0.010 ——
Sampled R=0.001 — — -
Exact CLOCK-Pro -.--..

‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80
Cache Size (GB)

Conclusions

* New SHARDS algorithm
* Approximate MRC in O(1) space, O(N) time
* Excellent accuracy in 1 MB footprint

* Practical online MRCs
* Even for memory-constrained drivers, firmware
* So lightweight, can run multiple instances

 Scaled-down simulation of non-LRU policies

Talus

A simple way to remove cliffs in cache performance

Key Idea

 Random spatial sampling results in a smilar MRC scaled by the
sampling rate.

—— Original
— Sample rate p=1/3

Cache size (MB)

Shards and Talus

* One way to think about SHARDS is that it simulates N size cache using
N/r size cache with sampling rate of r.

* |f we use N/r size cache with sampling rate of r’ where r’ <r, than the
effective cache size increases. If r’ > r than the effective cache size

decreases.

* If a knee in the MRC curve does not fit the cache size, we canfit it by
increasing the effective cache size.

Talus

—— Original
— Talus

Target:
6 MPKI @ 4MB

Cache size (MB)

Talus Property

* Can make ANY MRC curve to follow the convex hull of the original
MRC.

* With SHARDS, the overhead is fairly small.

 All resulting MRC is convex.

Talus insight.

Miss Rate

Cache Size

* 0 hits until the the cache sizeis big enough to fit the entire workload.

Talus insight.

r=0.5

Miss Rate <:

Cache Size

* 0 hits until the the cache sizeis big enough to fit the entire workload.

* We can reduce the miss rate by 50% by feeding only the 50% of the
addresses to the cache.

Talus insight.

Miss Rate

Cache Size

* 0 hitsuntil the the cache size is big enough to fit the entire workload.

* We can reduce the miss rate by 50% by feeding only the 50% of the
addresses to the cache.

* By repeatingthe experiment for all cache sizes, we can verify that it form the
convex hull of the MRC.

Talus results

0 —
012 3 456 7 8

LLC Size

perlbench

35

30f

25
20
15
10

)

—

0
01 2 3 456 7 8

0.0
01 234586 7 8

LLC Size (MB)

LLC Size (MB)

15
10
5

Talus is convex in practice!

.

0
01 23 456 7 8

LLC Size (MB)

SHARDS + Talus

* Use 1MB for the MRC prediction for stack algorithms like LRU.

* Use 32MB for the MRC prediction for other caching algorithms.
* With 32 SHARDS.

e Calculate Convex hull.

* Apply Talus.

e Less than 0.01% overhead.

Benefits of SHARDS + Talus

e Removes the cliffs.

* Resulting MRC is convex — partitioning problem is now greedy.

* Very low cost.
* SHARDS capacity also serves actual cache request.

* Seems to work with any caching algorithm.

* Convex hull is fairly stable over time.

Conclusion

* Online generation of multiple MRCs for very large caches is possible.
e Using fixed memory cost.
* Low CPU cost.
* Using different parameters.

e MRC driven QoS.

* Control average latency via miss rate control

* Larger effective cache size via Talus.
e Comes for almost free with SHARDS.

Q&A

Carl Waldspurger: carl@cloudphysics.com
Alex Garthwaite: alex@cloudphysics.com
Irfan Ahmed: irfan@cloudphysics.com
Nohhyun Park: nohhyun@cloudphysics.com

