SHARDS & Talus: Online MRC estimation and optimization for very large caches

Nohhyun Park

CloudPhysics, Inc.

Introduction

- Efficient MRC Construction with SHARDS FAST'15 Waldspurger at al.
- Talus: A simple way to remove cliffs in cache performance HPCA'15 Beckmann and Sanchez
- Two complementary techniques that improves cache performance
- Both techniques rely on same finding.

SHARDS

Efficient MRC Construction with SHARDS

Modeling Cache Performance

- Miss Ratio Curve (MRC)
 - Performance as f (size)
 - Working set knees
 - Inform allocation policy
- Reuse distance
 - Unique intervening blocks between use and reuse
 - LRU, stack algorithms

Motivation

- Cache partitioning.
- Simulation of various cache parameters.
 - Cache block size, write handling, shadow partition
- Workload partitioning.
 - By IO meta information (IO size, filesystem info, etc.)
- Problem: requires online modeling expensive
 - Too resource-intensive to be broadly practical
 - Exacerbated by increasing cache sizes

MRC Algorithm Research

Space, Time Complexity
N = total refs, M = unique refs

Key Idea

 Random spatial sampling results in a smilar MRC scaled by the sampling rate.

Spatially Hashed Sampling

sampling rate R = T / P subset inclusion property maintained as R is lowered

Basic SHARDS

Each sample statistically represents 1/R blocks Scale up reuse distances by same factor

SHARDS in Constant Space

evict samples to bound set size

Example SHARDS MRCs

- Block I/O trace t04
 - Production VM disk
 - 69.5M refs, 5.2M unique
- Sample size s_{max}
 - Vary from 128 to 32K
 - $s_{max} \ge 2K$ very accurate
- Small constant footprint
- SHARDS_{adj} adjustment

Experimental Evaluation

- Data collection
 - SaaS caching analytics
 - Remotely stream VMware vscsiStats
- 124 trace files
 - 106 week-long traces CloudPhysics customers
 - 12 MSR and 6 FIU traces SNIA IOTTA
- LRU, 16 KB block size

Exact MRCs vs. SHARDS

Error Analysis

- Mean Absolute Error (MAE)
 - | exact approx |
 - Average over all cache sizes
- Full set of 124 traces
- Error $\propto 1/\sqrt{s_{max}}$
- MAE for $s_{max} = 8K$ ____
 - 0.0027 median
 - 0.0171 worst-case

Memory Footprint

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - Memory ≈ R × baseline for larger traces
- Fixed-size SHARDS
 - New space-efficient code
 - Constant 1 MB footprint

Processing Time

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - R=0.001 speedup 41–1029×
- Fixed-size SHARDS
 - New space-efficient code
 - Overhead for evictions
 - S_{max} = 8K speedup 6–204×

Generalizing to Non-LRU Policies

- Many sophisticated replacement policies
 - ARC, LIRS, CAR, CLOCK-Pro, ...
 - Adaptive, frequency and recency
 - No known single-pass MRC methods!
- Solution: efficient scaled-down simulation
 - Filter using spatially hashed sampling
 - Scale down simulated cache size by sampling rate
 - Run full simulation at each cache size
- Surprisingly accurate results

Scaled-Down Simulation Examples

ARC — MSR-Web Trace

CLOCK-Pro — Trace t04

Conclusions

- New SHARDS algorithm
 - Approximate MRC in O(1) space, O(N) time
 - Excellent accuracy in 1 MB footprint
- Practical online MRCs
 - Even for memory-constrained drivers, firmware
 - So lightweight, can run multiple instances
- Scaled-down simulation of non-LRU policies

Talus

A simple way to remove cliffs in cache performance

Key Idea

 Random spatial sampling results in a smilar MRC scaled by the sampling rate.

Shards and Talus

- One way to think about SHARDS is that it simulates N size cache using N/r size cache with sampling rate of r.
- If we use N/r size cache with sampling rate of r' where r' < r, than the effective cache size increases. If r' > r than the effective cache size decreases.
- If a knee in the MRC curve does not fit the cache size, we can fit it by increasing the effective cache size.

Talus

Talus Property

• Can make ANY MRC curve to follow the convex hull of the original MRC.

• With SHARDS, the overhead is fairly small.

• All resulting MRC is convex.

Talus insight.

• 0 hits until the the cache size is big enough to fit the entire workload.

Talus insight.

- 0 hits until the the cache size is big enough to fit the entire workload.
- We can reduce the miss rate by 50% by feeding only the 50% of the addresses to the cache.

Talus insight.

- 0 hits until the the cache size is big enough to fit the entire workload.
- We can reduce the miss rate by 50% by feeding only the 50% of the addresses to the cache.
- By repeating the experiment for all cache sizes, we can verify that it form the convex hull of the MRC.

Talus results

SHARDS + Talus

- Use 1MB for the MRC prediction for stack algorithms like LRU.
- Use 32MB for the MRC prediction for other caching algorithms.
 - With 32 SHARDS.
- Calculate Convex hull.
- Apply Talus.
- Less than 0.01% overhead.

Benefits of SHARDS + Talus

- Removes the cliffs.
- Resulting MRC is convex partitioning problem is now greedy.
- Very low cost.
 - SHARDS capacity also serves actual cache request.
- Seems to work with any caching algorithm.
- Convex hull is fairly stable over time.

Conclusion

- Online generation of multiple MRCs for very large caches is possible.
 - Using fixed memory cost.
 - Low CPU cost.
 - Using different parameters.
- MRC driven QoS.
 - Control average latency via miss rate control
- Larger effective cache size via Talus.
 - Comes for almost free with SHARDS.

Q & A

Carl Waldspurger: carl@cloudphysics.com Alex Garthwaite: alex@cloudphysics.com

Irfan Ahmed: irfan@cloudphysics.com

Nohhyun Park: nohhyun@cloudphysics.com

Thank you!