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Introduction

* Efficient MRC Construction with SHARDS — FAST’15 Waldspurger at al.

 Talus: A simple way to remove cliffs in cache performance — HPCA’15
Beckmann and Sanchez

 Two complementary techniques that improves cache performance

* Both techniques rely on same finding.



SHARDS

Efficient MRC Construction with SHARDS



Miss Ratio

Modeling Cache Performance
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* Miss Ratio Curve (MRC)
* Performance as f(size)
* Working set knees
* Inform allocation policy

e Reuse distance

* Unique intervening blocks between
use and reuse

* LRU, stack algorithms



Motivation

* Cache partitioning.

* Simulation of various cache parameters.
* Cache block size, write handling, shadow partition

* Workload partitioning.
* By IO meta information (10 size, filesystem info, etc.)

* Problem: requires online modeling expensive
* Too resource-intensive to be broadly practical
* Exacerbated by increasing cache sizes



MRC Algorithm Research

« separate simulation
per cache size

_ Kessler, Hill &
Mattson Stack Algorithm Wood
single pass set, time sampling

O(M), O(NM)

1970 1975 1980 1985 1990 1995

SHARDS
Spatial hashing
UMON-DSS O(1). O(N)
hw set sampling PARDA
parallelism

2000 2005 2010 2015

Bennett & Kruskal

balanced tree ?'kenf | f
O(N), O(N log N) ree of unique refs
O(M), O(N log M)

Space, Time Complexity
N = total refs, M = unique refs

Bryan & Conte Counter Stacks
cluster sampling probabilistic counters
O(log M), O(N log M)
RapidMRC

on-off periods



Key Idea

 Random spatial sampling results in a smilar MRC scaled by the
sampling rate.

—— Original
— Sample rate p=1/3

Cache size (MB)




Spatially Hashed Sampling
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Basic SHARDS

randomize sample? compute distance scale up
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Each sample statistically represents 1 /R blocks
Scale up reuse distances by same factor



SHARDS in Constant Space

randomize sample? compute distance scale up
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Miss Ratio

Example SHARDS MRCs

Sample Size (Smax)
— Exact MRC

-+ 32K
—-8K

Cache Size (GB)

* Block I/O trace t04
* Production VM disk
* 69.5M refs, 5.2M unique

* Sample size s, ,,
e Vary from 128 to 32K
* S.ax 2 2K very accurate

* Small constant footprint
* SHARDS,; adjustment



Experimental Evaluation

* Data collection

» SaaS caching analytics

 Remotely stream VMware vscsiStats
e 124 trace files

* 106 week-long traces CloudPhysics
' customers

e 12 MSR and 6 FIU traces SNIA IOTTA
* LRU, 16 KB block size

CLO HYSICS

Collector vApp -

ESX
KVM



Exact MRCs vs. SHARDS
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Error Analysis

 Mean Absolute Error (MAE)
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e Full set of 124 traces
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Memory Footprint

e Full set of 124 traces
* Sequential PARDA
* Basic SHARDS

100000

7 S Sens P * Modified PARDA
10000 | SHARDS fi=0001 oo .

] max * Memory = R x baseline for larger
1000 traces

* Fixed-size SHARDS
* New space-efficient code
* Constant 1 MB footprint
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Processing Time

e Full set of 124 traces
* Sequential PARDA
* Basic SHARDS
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Generalizing to Non-LRU Policies

* Many sophisticated replacement policies
* ARC, LIRS, CAR, CLOCK-Pro, ...
* Adaptive, frequency and recency
* No known single-pass MRC methods!

* Solution: efficient scaled-down simulation
* Filter using spatially hashed sampling
* Scale down simulated cache size by sampling rate
* Run full simulation at each cache size

 Surprisingly accurate results



Scaled-Down Simulation Examples

ARC — MSR-Web Trace
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Conclusions

* New SHARDS algorithm
* Approximate MRC in O(1) space, O(N) time
* Excellent accuracy in 1 MB footprint

* Practical online MRCs
* Even for memory-constrained drivers, firmware
* So lightweight, can run multiple instances

 Scaled-down simulation of non-LRU policies



Talus

A simple way to remove cliffs in cache performance



Key Idea

 Random spatial sampling results in a smilar MRC scaled by the
sampling rate.

—— Original
— Sample rate p=1/3

Cache size (MB)




Shards and Talus

* One way to think about SHARDS is that it simulates N size cache using
N/r size cache with sampling rate of r.

* |f we use N/r size cache with sampling rate of r’ where r’ <r, than the
effective cache size increases. If r’ > r than the effective cache size

decreases.

* If a knee in the MRC curve does not fit the cache size, we canfit it by
increasing the effective cache size.



Talus

—— Original
— Talus

Target:
6 MPKI @ 4MB

Cache size (MB)




Talus Property

* Can make ANY MRC curve to follow the convex hull of the original
MRC.

* With SHARDS, the overhead is fairly small.

 All resulting MRC is convex.



Talus insight.

Miss Rate

Cache Size

* 0 hits until the the cache sizeis big enough to fit the entire workload.



Talus insight.

r=0.5

Miss Rate <:

Cache Size

* 0 hits until the the cache sizeis big enough to fit the entire workload.

* We can reduce the miss rate by 50% by feeding only the 50% of the
addresses to the cache.



Talus insight.

Miss Rate

Cache Size

* 0 hitsuntil the the cache size is big enough to fit the entire workload.

* We can reduce the miss rate by 50% by feeding only the 50% of the
addresses to the cache.

* By repeatingthe experiment for all cache sizes, we can verify that it form the
convex hull of the MRC.



Talus results

0 —
012 3 456 7 8

LLC Size

perlbench

35

30f

25
20
15
10

)

—

0
01 2 3 456 7 8

0.0
01 234586 7 8

LLC Size (MB)

LLC Size (MB)

15
10
5

Talus is convex in practice!

.

0
01 23 456 7 8

LLC Size (MB)



SHARDS + Talus

* Use 1MB for the MRC prediction for stack algorithms like LRU.

* Use 32MB for the MRC prediction for other caching algorithms.
* With 32 SHARDS.

e Calculate Convex hull.

* Apply Talus.

e Less than 0.01% overhead.



Benefits of SHARDS + Talus

e Removes the cliffs.

* Resulting MRC is convex — partitioning problem is now greedy.

* Very low cost.
* SHARDS capacity also serves actual cache request.

* Seems to work with any caching algorithm.

* Convex hull is fairly stable over time.



Conclusion

* Online generation of multiple MRCs for very large caches is possible.
e Using fixed memory cost.
* Low CPU cost.
* Using different parameters.

e MRC driven QoS.

* Control average latency via miss rate control

* Larger effective cache size via Talus.
e Comes for almost free with SHARDS.



Q&A

Carl Waldspurger: carl@cloudphysics.com
Alex Garthwaite: alex@cloudphysics.com
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Nohhyun Park: nohhyun@cloudphysics.com



