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Overview

PCM: promise, reality, and opportunities

SQLite

= Standard data manager in mobile era
* Android and iOS

Characteristics of SQLite and mobile apps
=  Write amplification

=  Write locality

= Small delta

SQLite/PPL



PCM: Promise and Reality

* Latency: DRAM vs. NAND vs. PCM

NAND Flash PCM PCM
[29] (theoretical) (measured)
[ISCA 09] [5,25]

Read ~ 30 ns 156 us 48 ns 408 ns
(4B) (4KB) (4B) (4B)
Write ~ 30 ns 505 us 150 ns 7.5 us
(4B) (4KB) (4B) (4B)
M

= Similar observation [FAST “145g = 50 =)
Slower



NAND vs. PCM

* Write Latency: PCM vs. NAND
= 4B Write: 7.5us vs. 505us
= 4KB Write: 7500us vs. 505us
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Unified Memory System

e UMS Architecture e UMS Board [RSP ‘14]
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Write Amplification in Mobile Application

Auto-commit

Mobile Application
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Write Locality in Mobile Apps
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Small Delta Between Consecutive Writes

* Mostly less than several 100s bytes
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Implications

 The small deltas of SQLite pages

=  Capturing and storing the small deltas will
avoid write amplification by SQLite

= Avoiding write amplification will provide faster
response time and longer lifespan of NAND
flash

* Byte-addressable, Non-volatile PCM
supporting short write latency of small data

= PCM as alog area of small delta



PPL Architecture

* PPL module is added
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PPL Architecture

* PPL module is added
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Evaluation Setup

* Compare SQLite/PPL with Rollback
journal(RBJ) and WAL journal

* 6 mobile workloads

= Real workloads: Kakaotalk, Twitter, Facebook,
Gmail, Web Browser

= Synthetic workload: AndroBench

* A Zync-7030 board equipped with the real
PCM chip[RSP ‘14]



Baseline Performance Comparison

e Qverall Execution Time: SQLite RBJ vs. WAL vs. PPL
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Conclusion

* Present the design and implementation of
SQLite/PPL

e Future works

= Apply PPL to enterprise DB: e.g. Postgres [CACM
91]

B Xxxxxxx logging
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Two Update Approaches

* |n-place update vs. copy-on-write
= Durability and atomicity of tx app.

RAM P1 _new P2_new

PU . Journal File
P1_old|Database File(s) |P2_old (Rollback/WAL)

\ /
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P1 old|Database File(s) |P2_old P1 new|P2 new




In-place Update vs. CoW

* Why IPU > CoW in computer science?
= Storage cost
= (Clusteredness of pages in a file (for HDD?)

* But, historically, CoW > IPU! (Jim Gray)
" Multi-version support
= (Clusteredness in flash is less important



X-FTL

* Flash-aware transactional atomicity for
application taking IPU (e.g. SQLite)

LPN | PPN TX’s update set = {P1, P2, ..., Pn}
Page Mapping . .
Table P1 A Atomic remapping!!
---‘\
I‘ .
Pn N
- New mappin
(_ Old mapping BPINE
" —— —= “Fa TS T
Flash Chips P1 P2 Pn P1 | P2 Pn
\ ) \ )
\ 4 \
Old copy of P1, ..., Pn New copy of P1, ..., Pn

* Cf. FusionlO’s atomic write (vs. A| = O CH)
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X-FTL and File Metadata

e X-FTL can support transactional atomicity of
updated pages in user files.

 What about the shared metadata pages
updated by concurrent transactional
applications?
=  Feedback from Prof. Jin-Soo Kim
" False sharing of metadata



More about CFS

System-wise vs. transaction-wise consistency
= Redo and undo logging for meta-data update

cf. Application-level crash consistency @ rRemzi group
=  Vijay@Wisconsin [OSDI12, SOSP13, FAST13, PhD thesis]

=  No multiple file support: cf. CFS

cf. Failure-Atomic Update of Application Data
(Usenix FAST 2015)
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More about CFS (2)

* In flash era, “CFS + X-FTL” is an answer to
=  Application-level crash consistency

= Journaling of journal

* More lightweight solution than "CFS + X-FTL" ?
" Problemin “CFS + X-FTL”: explicit tx concept
(e.g. tid)
= E.g. SHARE interface
= SQLite journaling overhead: Xxxxxxx logging



What if address remapping feature is
exposed to applications?

A Valid
Tree nodes /\
Stale
B C
Documents D1 D2 D3 D2’
/ SHARE (D2_LBA, D2'_LBA)
Flash Storage
e leteleeleeleelelilileleeleelectin -
Page Mapping Table [ B2 I | :
(Logical 2 Physical) PBA 3 s . _ .
‘__l____;'a-_________;_/

Physical Address D2
in Flash Memory “
(PBA) ‘
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