Two Techniques for Faster Transactional
Atomicity on Flash and NVram

. SQLite/PPL [VLDB 15]
e CFS [USENIX ATC 15]

Sang-Won Lee
(swlee@skku.edu)

SQLite Optimization
with Phase Change Memory
for Mobile Applications

VLDB 2015
Gihwan Oh, Sang-Won Lee,
Sangchul Kim, and Bongki Moon

Overview

PCM: promise, reality, and opportunities

SQLite

= Standard data manager in mobile era
* Android and iOS

Characteristics of SQLite and mobile apps
= Write amplification

= Write locality

= Small delta

SQLite/PPL

PCM: Promise and Reality

* Latency: DRAM vs. NAND vs. PCM

NAND Flash PCM PCM
[29] (theoretical) (measured)
[ISCA 09] [5,25]

Read ~ 30 ns 156 us 48 ns 408 ns
(4B) (4KB) (4B) (4B)
Write ~ 30 ns 505 us 150 ns 7.5 us
(4B) (4KB) (4B) (4B)
M

= Similar observation [FAST “145g = 50 =)
Slower

NAND vs. PCM

* Write Latency: PCM vs. NAND
= 4B Write: 7.5us vs. 505us
= 4KB Write: 7500us vs. 505us

A

7.5 ms PCM

505 us
NAND
75 us

7.5 us

4B 40 B 240B 4KB

Unified Memory System

e UMS Architecture e UMS Board [RSP ‘14]

Applications

Byte-addressable
DIMM Interface

Host Unified Memory System

A
f mmap())

DRAM PCM

Block I/0O Interface

Storage Flash Storage
(e.g. eMMC, SD card)

* 10,0005 ??

Write Amplification in Mobile Application

Auto-commit

Mobile Application

saL Force-write
| Interface Block interface
B-tree module Journaling
SQlite |- . File system Metadata
(Library)
page| page| - page
' brRAM| Buffer Cache
File System Block Interface ‘Hi’ >
page writes
page page page Journal [16’20]
Nand Flash Database File (per Application) File
Storage

Write Locality in Mobile Apps

lHiI

‘What’s up?’

Consecutive
Single Simple
Transactions

with Small Bytes

are updated

Page Address

140

Index
Table -
138
136 | .-..-.........“m
134 +
132 o
130 ----—
126 fomme

2300 2400 2500 2600 2700 2800 2900 3000
Write Sequence

Sequence of page-write request in SQLite

Small Delta Between Consecutive Writes

* Mostly less than several 100s bytes

1

0.8 |

>
(&)
c
()]
> 06
o
()]
=
S 04}
E
N Androbench
Gmall W
| KakaoTalk
Twitter =r=imim
Facebook
o L T Browser ey
1 10 100 1000

Differences in bytes

Implications

 The small deltas of SQLite pages

= Capturing and storing the small deltas will
avoid write amplification by SQLite

= Avoiding write amplification will provide faster
response time and longer lifespan of NAND
flash

* Byte-addressable, Non-volatile PCM
supporting short write latency of small data

= PCM as alog area of small delta

PPL Architecture

* PPL module is added

Mobile Application |
4 SQl Interface
SQLite oo oo —)
(Library)| i B-tree module tx_begin/
Commit/abort
per-page
update
‘Pager update
UMS '
‘Hi’ 'HY]
NewQO| == Newl| ... New2
[nded
| DRAM \ no flash write J\ Buf Cxq
| at commit =~ — uiter Cacye
: \ X N k [PRAM
\ \ N\ NS
[File System | \ \ N < i

Block Interfac page read \Gge write \ \\\
X AV

] T =
NewO| wweeeees Newl| — woeeeees New2| == | L iveens: Old1 Old2
. . o Index Journal File (per DB file)
Flash Storage SQLite File (per Application)

(SD Card)

PPL Architecture

* PPL module is added

Mobile Application |
v SQL Interface
SQLite _
(Library)| i B-tree module tx_begin/ Pl
Commit/abort : Recovery
Manager
Manager, 1
per-page @ ﬂog tx: begin, commit, abort
update Capturer Writer
P : Log Log \
’ Appli per-page
Pager update pRae el log entry
UMS I
> =~ tx0, ‘Hi’, insert, PO)
Hi Hi] PUIQE_/cg _____ ;t);o, ’H;', ;Z;:L Plj begm_(txO}
NewO[=== Newl| .« New2 P (if any (tx0, index, insert, P2) commit(tx0)
|Index 1 ;r" - Per-Page Log Global Log
| no flash write J
DRAM | \ at commit "= \ Buffer C;qe
P TP PP T T O st Werttl Log Area (Per SQLite File) | PRAM
[File System |

page read

page write

oldo

Old1

Flash Storage
(SD Card)

SQLite File (per Application)

Evaluation Setup

* Compare SQLite/PPL with Rollback
journal(RBJ) and WAL journal

* 6 mobile workloads

= Real workloads: Kakaotalk, Twitter, Facebook,
Gmail, Web Browser

= Synthetic workload: AndroBench

* A Zync-7030 board equipped with the real
PCM chip[RSP ‘14]

Baseline Performance Comparison

e Qverall Execution Time: SQLite RBJ vs. WAL vs. PPL

CELLRANGE
5 gngLLRANGE]x : .
(@)
S 100 [CELLRANGE]x
% 80 [CELLRANGE]x IE%ELLRANGT&LLRANG
g o E&LLRANGE])TCELLRANGE]X
= 60 [CEMRANGEDE EBRANGERE fit |
S 40 FEMRANGE]X
5 20
N
A g s"é o L Q}\é\
\ébo ’\S QO (zéo © 60
%’b Q) <<fb 4\&
v.\

Rollback Journal WAL mSQLite/PPL

See paper for performance details of Latency, Effect of
Log Sector Size/All in PCM, Read Performance

14

Conclusion

* Present the design and implementation of
SQLite/PPL

e Future works

= Apply PPL to enterprise DB: e.g. Postgres [CACM
91]

B Xxxxxxx logging

Q&A

Lightweight
Application-Level Crash Consistency
on Transactional Flash Storage

Usenix ATC 2015
Changwoo Min, Woon-Hak Kang, Taesoo Kim,
Sang-Won Lee, Young Ik Eom
R QKWAN %4,_ :"’;
%@ G Georgia |
mgy@;g;ﬁ/&‘v

Techl||

Two Update Approaches

* |n-place update vs. copy-on-write
= Durability and atomicity of tx app.

RAM P1 _new P2_new

PU . Journal File
P1_old|Database File(s) |P2_old (Rollback/WAL)

\ /

Cow

P1 old|Database File(s) |P2_old P1 new|P2 new

In-place Update vs. CoW

* Why IPU > CoW in computer science?
= Storage cost
= (Clusteredness of pages in a file (for HDD?)

* But, historically, CoW > IPU! (Jim Gray)
" Multi-version support
= (Clusteredness in flash is less important

X-FTL

* Flash-aware transactional atomicity for
application taking IPU (e.g. SQLite)

LPN | PPN TX’s update set = {P1, P2, ..., Pn}
Page Mapping . .
Table P1 A Atomic remapping!!
---‘\
I‘ .
Pn N
- New mappin
(_ Old mapping BPINE
" —— —= “Fa TS T
Flash Chips P1 P2 Pn P1 | P2 Pn
\) \)
\ 4 \
Old copy of P1, ..., Pn New copy of P1, ..., Pn

* Cf. FusionlO’s atomic write (vs. A| = O CH)

10/21/2015 20

X-FTL and File Metadata

e X-FTL can support transactional atomicity of
updated pages in user files.

 What about the shared metadata pages
updated by concurrent transactional
applications?
= Feedback from Prof. Jin-Soo Kim
" False sharing of metadata

More about CFS

System-wise vs. transaction-wise consistency
= Redo and undo logging for meta-data update

cf. Application-level crash consistency @ rRemzi group
= Vijay@Wisconsin [OSDI12, SOSP13, FAST13, PhD thesis]

= No multiple file support: cf. CFS

cf. Failure-Atomic Update of Application Data
(Usenix FAST 2015)

| Block o|ﬂ| Block 1 | | Block 2|

| C']unc.(i_l inndc| | File inodc|

| Block 0] |E5]0ck1| [Block 2]

| Clone (Einodc| | File inodc|
JR— T~

| Block 0] | Block 1|‘-$| Block 2| | Block 3]

| (]uu:{llnodJ | File i]_mdc| | Clone 1 inudc|

Ry —
R
S

-

r' i . ‘
[Block 0] | B]ockﬂ | Bixt 2] i| Block 3]

(a) Initial state of file
with 3 blocks

(b) open(O ATOMIC)
creates clone

(c) Modifications
remap blocks

(d) fsync/msync
replaces old
clone with new
clone

More about CFS (2)

* In flash era, “CFS + X-FTL” is an answer to
= Application-level crash consistency

= Journaling of journal

* More lightweight solution than "CFS + X-FTL" ?
" Problemin “CFS + X-FTL”: explicit tx concept
(e.g. tid)
= E.g. SHARE interface
= SQLite journaling overhead: Xxxxxxx logging

What if address remapping feature is
exposed to applications?

A Valid
Tree nodes /\
Stale
B C
Documents D1 D2 D3 D2’
/ SHARE (D2_LBA, D2'_LBA)
Flash Storage
e leteleeleeleelelilileleeleelectin -
Page Mapping Table [B2 I | :
(Logical 2 Physical) PBA 3 s . _ .
‘__l____;'a-_________;_/

Physical Address D2
in Flash Memory “
(PBA) ‘

Q&A

