
Two Techniques for Faster Transactional
Atomicity on Flash and NVram

Sang-Won Lee

(swlee@skku.edu)

• SQLite/PPL [VLDB 15]
• CFS [USENIX ATC 15]

SQLite Optimization
with Phase Change Memory

for Mobile Applications

VLDB 2015

Gihwan Oh, Sang-Won Lee,

Sangchul Kim, and Bongki Moon

Overview

• PCM: promise, reality, and opportunities

• SQLite
 Standard data manager in mobile era

• Android and iOS

• Characteristics of SQLite and mobile apps
 Write amplification

 Write locality

 Small delta

• SQLite/PPL

10/21/2015 3

PCM: Promise and Reality

• Latency: DRAM vs. NAND vs. PCM

 Similar observation [FAST ‘14]

DRAM NAND Flash
[29]

PCM
(theoretical)

[ISCA 09]

PCM
(measured)

[5,25]

Read ~ 30 ns
(4B)

156 us
(4KB)

48 ns
(4B)

408 ns
(4B)

Write ~ 30 ns
(4B)

505 us
(4KB)

150 ns
(4B)

7.5 us
(4B)

8.5x, 50x
Slower

NAND vs. PCM

• Write Latency: PCM vs. NAND

 4B Write: 7.5us vs. 505us

 4KB Write: 7500us vs. 505us

4 B 40 B 240B 4KB

NAND
505 us

7.5 us

7.5 ms PCM

75 us

Unified Memory System

• UMS Architecture

6

Applications

DRAM PCM

Flash Storage
(e.g. eMMC, SD card)

Storage

Host

Byte-addressable
DIMM Interface

Block I/O Interface

Unified Memory System

mmap()

• UMS Board [RSP ‘14]

• 10,000$??

Write Amplification in Mobile Application

7

‘Hi’

Huge Write
Amplification:

‘Hi’  11*4KB
page writes

[16,20]

Performance;
Endurance

SQL
Interface

B-tree module

Mobile Application

Buffer Cache

page pagepage

Database File (per Application)

Journal
File

page

DRAM

Block Interface

SQLite
(Library)

File System

Nand Flash
Storage

page page

Auto-commit
Force-write

Block interface
Journaling

File system Metadata

Write Locality in Mobile Apps

8

‘Hi’

‘What’s up?’

Same pages
are updated

Consecutive

Single Simple
Transactions

with Small Bytes

Sequence of page-write request in SQLite

Small Delta Between Consecutive Writes

• Mostly less than several 100s bytes

9

Implications

• The small deltas of SQLite pages

 Capturing and storing the small deltas will
avoid write amplification by SQLite

 Avoiding write amplification will provide faster
response time and longer lifespan of NAND
flash

• Byte-addressable, Non-volatile PCM
supporting short write latency of small data

 PCM as a log area of small delta

10

PPL Architecture

• PPL module is added

SQL Interface

Block Interface

Pager

B-tree module

SQLite File (per Application)

Mobile Application

SQLite
(Library)

File System

UMS

DRAM
PRAM

Buffer Cache

Journal File (per DB file)

Flash Storage
(SD Card)

New0 New2

New0 New2

New1

New1

per-page
update

tx_begin/
Commit/abort

update

page read

no flash write
at commit

page write

Old0 Old2Old1

‘Hi’ ‘Hi’

Index

‘Hi’ ‘Hi’

Index

PPL Architecture

• PPL module is added

Log
Merger

SQL Interface

Block Interface

Pager

Log Area (Per SQLite File)

begin(tx0)
commit(tx0)

Global LogPer-Page Log

B-tree module

Log
Applier

SQLite File (per Application)

Mobile Application

SQLite
(Library)

File System

UMS

DRAM
PRAM

Buffer Cache

Journal File (per DB file)

Flash Storage
(SD Card)

Log
Writer

Log
Capturer

Old0 Old2Old1

per-page
update

(tx0, ‘Hi’, insert, P0)
(tx0, ‘Hi’, insert, P1)

(tx0, index, insert, P2)

tx_id
Manager

tx: begin, commit, abort

per-page
log entry

tx_begin/
Commit/abort

update

page read

page_log
(if any)

no flash write
at commit

page write

PPL
Recovery
Manager

New0 New2New1

‘Hi’ ‘Hi’

Index

Evaluation Setup

• Compare SQLite/PPL with Rollback
journal(RBJ) and WAL journal

• 6 mobile workloads

 Real workloads: Kakaotalk, Twitter, Facebook,
Gmail, Web Browser

 Synthetic workload: AndroBench

• A Zync-7030 board equipped with the real
PCM chip[RSP ‘14]

13

Baseline Performance Comparison

• Overall Execution Time: SQLite RBJ vs. WAL vs. PPL

• See paper for performance details of Latency, Effect of
Log Sector Size/All in PCM, Read Performance

14

[CELLRANGE]x

[CELLRANGE]x
[CELLRANGE]x

[CELLRANGE]x
[CELLRANGE]x

[CELLRANGE]x

[CELLRANGE]x

[CELLRANGE]x[CELLRANGE]x[CELLRANGE]x[CELLRANGE]x

[CELLRANGE]x

0
20
40
60
80

100
120
140

Ex
ec

u
ti

o
n

 T
im

e(
se

co
n

d
)

Rollback Journal WAL SQLite/PPL

Conclusion

• Present the design and implementation of
SQLite/PPL

• Future works

 Apply PPL to enterprise DB: e.g. Postgres [CACM
91]

 Xxxxxxx logging

15

Q & A

10/21/2015 16

Lightweight
Application-Level Crash Consistency

on Transactional Flash Storage

Usenix ATC 2015

Changwoo Min, Woon-Hak Kang, Taesoo Kim,

Sang-Won Lee, Young Ik Eom

Two Update Approaches

• In-place update vs. copy-on-write

 Durability and atomicity of tx app.

18

RAM P1_new P2_new

IPU Journal File
(Rollback/WAL)

Database File(s)P1_old P2_old

CoW
Database File(s)P1_old P2_old P1_new P2_new

In-place Update vs. CoW

• Why IPU > CoW in computer science?

 Storage cost

 Clusteredness of pages in a file (for HDD?)

• But, historically, CoW > IPU! (Jim Gray)

 Multi-version support

 Clusteredness in flash is less important

10/21/2015 19

X-FTL

• Flash-aware transactional atomicity for
application taking IPU (e.g. SQLite)

• Cf. FusionIO’s atomic write (vs. 서울여대)

20

TX’s update set = {P1, P2, ..., Pn}

P1 ... P2 Pn

New copy of P1, … , Pn

Page Mapping
Table

Flash Chips

Old copy of P1, … , Pn

LPN PPN

... ...

P1

... ...

Pn

... ... Old mapping
New mapping

P1 P2 Pn

Atomic remapping!!

10/21/2015

X-FTL and File Metadata

• X-FTL can support transactional atomicity of
updated pages in user files.

• What about the shared metadata pages
updated by concurrent transactional
applications?

 Feedback from Prof. Jin-Soo Kim

 False sharing of metadata

21

More about CFS

• System-wise vs. transaction-wise consistency
 Redo and undo logging for meta-data update

• cf. Application-level crash consistency @ Remzi group

 Vijay@Wisconsin [OSDI12, SOSP13, FAST13, PhD thesis]

 No multiple file support: cf. CFS

• cf. Failure-Atomic Update of Application Data
(Usenix FAST 2015)

22

More about CFS (2)

• In flash era, “CFS + X-FTL” is an answer to

 Application-level crash consistency

 Journaling of journal

• More lightweight solution than ”CFS + X-FTL” ?

 Problem in “CFS + X-FTL”: explicit tx concept
(e.g. tid)

 E.g. SHARE interface

 SQLite journaling overhead: Xxxxxxx logging

23

What if address remapping feature is
exposed to applications?

Q & A

10/21/2015 25

