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Overview

• PCM: promise, reality, and opportunities

• SQLite
 Standard data manager in mobile era

• Android and iOS

• Characteristics of SQLite and mobile apps
 Write amplification

 Write locality

 Small delta

• SQLite/PPL 
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PCM: Promise and Reality

• Latency: DRAM vs. NAND vs. PCM

 Similar observation [FAST ‘14]

DRAM NAND Flash
[29]

PCM 
(theoretical)

[ISCA 09]

PCM 
(measured)

[5,25]

Read ~ 30 ns
(4B)

156 us
(4KB)

48 ns
(4B)

408 ns
(4B)

Write ~ 30 ns
(4B)

505 us
(4KB)

150 ns
(4B)

7.5 us
(4B)

8.5x, 50x
Slower 



NAND vs. PCM

• Write Latency: PCM vs. NAND

 4B Write: 7.5us vs. 505us

 4KB Write: 7500us vs. 505us 

4 B 40 B 240B 4KB

NAND
505 us

7.5 us

7.5 ms PCM

75 us



Unified Memory System

• UMS Architecture
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• UMS Board [RSP ‘14]

• 10,000$ ??



Write Amplification in Mobile Application

7

‘Hi’ 

Huge Write 
Amplification: 

‘Hi’  11*4KB
page writes 

[16,20]

Performance; 
Endurance

SQL 
Interface

B-tree module

Mobile Application

Buffer Cache

page pagepage

Database File (per Application)

Journal 
File

page

DRAM

Block Interface

SQLite
(Library)

File System

Nand Flash
Storage

page page

Auto-commit
Force-write

Block interface
Journaling

File system Metadata



Write Locality in Mobile Apps
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Small Delta Between Consecutive Writes

• Mostly less than several 100s bytes
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Implications

• The small deltas of SQLite pages

 Capturing and storing the small deltas will 
avoid write amplification by SQLite

 Avoiding write amplification will provide faster 
response time and longer lifespan of NAND 
flash

• Byte-addressable, Non-volatile PCM 
supporting short write latency of small data

 PCM as a log area of small delta
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PPL Architecture

• PPL module is added
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PPL Architecture

• PPL module is added
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Evaluation Setup

• Compare SQLite/PPL with Rollback 
journal(RBJ) and WAL journal

• 6 mobile workloads

 Real workloads: Kakaotalk, Twitter,  Facebook, 
Gmail, Web Browser

 Synthetic workload: AndroBench

• A Zync-7030 board equipped with the real 
PCM chip[RSP ‘14]
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Baseline Performance Comparison

• Overall Execution Time: SQLite RBJ vs. WAL vs. PPL

• See paper for performance details of Latency, Effect of 
Log Sector Size/All in PCM, Read Performance
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Conclusion

• Present the design and implementation of 
SQLite/PPL

• Future works

 Apply PPL to enterprise DB: e.g. Postgres [CACM 
91]

 Xxxxxxx logging
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Q & A
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Two Update Approaches

• In-place update vs. copy-on-write

 Durability and atomicity of tx app.
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RAM P1_new P2_new

IPU Journal File
(Rollback/WAL)
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Database File(s)P1_old P2_old P1_new P2_new



In-place Update vs. CoW

• Why IPU > CoW in computer science?

 Storage cost

 Clusteredness of pages in a file (for HDD?)

• But, historically, CoW > IPU! (Jim Gray)

 Multi-version support

 Clusteredness in flash is less important 
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X-FTL

• Flash-aware transactional atomicity for 
application taking IPU (e.g. SQLite)

• Cf. FusionIO’s atomic write (vs. 서울여대)
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TX’s update set = {P1, P2, ..., Pn}

P1 ... P2 Pn

New copy of P1, … , Pn

Page  Mapping
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... ...

P1

... ...
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... ... Old mapping
New mapping

P1 P2 Pn

Atomic remapping!!
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X-FTL and File Metadata

• X-FTL can support transactional atomicity of 
updated pages in user files.

• What about the shared metadata pages 
updated by concurrent transactional 
applications?

 Feedback from Prof. Jin-Soo Kim

 False sharing of metadata
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More about CFS 

• System-wise vs. transaction-wise consistency
 Redo and undo logging for meta-data update

• cf. Application-level crash consistency  @ Remzi group

 Vijay@Wisconsin [OSDI12, SOSP13, FAST13, PhD thesis]

 No multiple file support: cf. CFS

• cf. Failure-Atomic Update of Application Data 
(Usenix FAST 2015)
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More about CFS (2) 

• In flash era, “CFS + X-FTL” is an answer to

 Application-level crash consistency 

 Journaling of journal

• More lightweight solution than ”CFS + X-FTL” ?

 Problem in “CFS + X-FTL”:  explicit tx concept 
(e.g. tid)

 E.g. SHARE interface

 SQLite journaling overhead: Xxxxxxx logging
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What if address remapping feature is 
exposed to applications?



Q & A

10/21/2015 25


