
Changman Lee, Dongho Shim, Joo-Young Hwang, Sang-yeun Cho

Samsung Electronics.

F2FS: A New File System for Flash Storage

• Introduction

• Design

• Flash Friendly On-disk Layout

• Index Structure

• Segment Allocation

• Cleaning

• Adaptive Logging

• Recovery

• Evaluation

• Experimental Setup

• Multi-head Logging Effect

• Adaptive Logging Performance (under aged condition)

• Cleaning Cost Analysis

• Mobile Benchmark

• Server Benchmark

• Conclusions

Contents

Introduction

Random writes is bad to flash storage device.

• Sustained random write performance degrades

Sequential write oriented file systems

• log-structured file systems, copy-on-write file systems

Our Contribution

• Design and implement a new file system to fully leverage and optimize

the usage of NAND flash solutions (with block interface).

• Performance comparison with Linux file systems (Ext4, Btrfs, Nilfs2).

– Mobile system and server system

- 3/19 -

Key Design Considerations

Flash-friendly on-disk layout

Cost-effective index structure

Multi-head logging

Adaptive logging

fsync acceleration with roll-forward recovery

- 4/19 -

Flash-friendly On-Disk Layout

Flash Awareness

• All the FS metadata are located together for locality

• Start address of main area is aligned to the zone size

• Cleaning operation is done in a unit of section

Cleaning overhead

• Multiple logs for static hot/cold data separation

Align to zone size

Block – 4KB
Segment – 2MB
Section – n Segments
Zone – m Sections

- 5/19 -

LFS Index Structure

C

P
S

B
Inode
Map

Inode for

directory
Directory data

File data

Indirect
Pointer block

Segment Summ

ary

Segment Usage

Inode for

regular file
File data

…

Used for cleaning

Fixed location, but separated

One big log

Direct
Pointer block

LFS

lSingle head logging
lWandering tree issue

- 6/19 -

F2FS Index Structure

C

P
S

B
NAT*

Inode for

directory
Directory data

File data

Indirect
Node

Segment Summary
(SSA)

Segment Info. Table

(SIT)

Inode for

regular file

File data …

Used for cleaning

Fixed location w/ locality

Multiple logs

Direct
Node

Referenced via NAT lookup

Referenced via NAT lookup

* NAT: Node Address Table F2FS

lMulti-head logging
lRestrained write propagation

- 7/19 -

Segment Allocation for Multi-head Logging

To physically separate multi-head logs in NAND flash,

each logs are allocated across the separated zones.

• This strategy works well with set-associative mapping FTL mapping.

H

o

w

Zone-blind Allocation Zone-aware Allocation

file1 file2

Zone Zone
Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

...

Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

... ...

Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

...

Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

... ...

Zone Zone
Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

...

Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

... ...

Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

...

Segment

B
lo

c
k

B
lo

c
k

B
lo

c
k

... ...

erase block

B
lo

c
k

B
lo

c
k

B
lo

c
k

B
lo

c
k

FTL mapping FTL mapping FTL mapping

erase block
B

lo
c
k

B
lo

c
k

p
a
g

e

p
a
g

e

erase block

B
lo

c
k

B
lo

c
k

p
a
g

e

p
a
g

e

LBA LBA

NAND
NAND

file1 file2

- 8/19 -

Cleaning

Cleaning is done in section unit.

• Section to be aligned with FTL’s GC unit.

Cleaning procedure

• Victim selection: get a victim section through referencing Segment Info.

Table (SIT).

• Valid block check: Load parent index structures of there-in data identified

from Segment Summary Area (SSA).

• Migration: move valid blocks by checking their cross-reference

• The victim section is marked as “pre-free”.

– It will become free after the next checkpoint is made.

Victim selection policies

• Greedy algorithm for foreground cleaning job

• Cost-benefit algorithm for background cleaning job

- 9/19 -

Adaptive Logging

To reduce cleaning cost, F2FS changes write policy dynamically.

• Write policies: LFS mode, threaded logging

• LFS mode (logging to clean segment)

– Need cleaning operations if there is no free segment.

– Cleaning causes mostly random read and sequential writes.

• Threaded logging (logging to dirty segment)

– Reuse obsolete blocks in a dirty segment

– No need to run cleaning

– Cause random writes

Threaded logging writes data

into invalid blocks in segment.

v v v v

segment

* Node is always logged in LFS mode.

- 10/19 -

Power Off Recovery

file1 dir1

NAT
S

B
SIT SSA CP

Shadow copy

When SPO is occurred after checkpointing #0
1. Roll-back to last checkpoint area and recover dir1, file1
2. Recover fsynced file2 by roll-forward recovery routine

file2

NAT/SIT
journaling

If file2 is fsynced after checkpoint,

it is a candidate of roll-forward recovery during POR.

1.Mark the inode block with a fsync mark

2.During roll-forward, search marked direct node blocks

3.Search the change of marked node block and its original one

checkpointed before

4.Replay data write; update NAT, SIT accordingly

5.Create checkpoint

#0, #1

Shadow copy on Checkpoint, NAT, SIT blocks

NAT/SIT entry journal in checkpoint block

Roll-forward recovery to recover fsync’ed data

fsync mark

- 11/19 -

Evaluation

Experimental Setup

• Mobile and server systems

• 8 benchmarks used

• Performance comparison

with ext4, btrfs, nilfs2

(Seq-R, Seq-W, Rand-R, Rand-W)

- 12/19 -

Multi-head Logging

Using more logs gives better hot and cold data separation.

Test condition:
Run two workloads simultaneously:
1. Varmail (10,000 files in 100 dirs, total writes 6.5 GB)
2. Copy jpg files (500KB, 5,000 files, 2.5GB)  classified by F2FS as cold

- 13/19 -

Adaptive Logging

Adaptive logging gives graceful performance degradation under

highly aged volume conditions.

• Fileserver test on SATA SSD (94% util.)

– Sustained performance improvement: 2x/3x over ext4/btrfs.

• Iozone test on eMMC (100% util.)

– Sustained performance is similar to ext4.

Threaded logging writes data into invalid bl

ocks in victim

v v v v

Fileserver test on SATA SSD,
94% utilization Iozone test on eMMC,

100% utilization

- 14/19 -

Cleaning Cost Analysis

Under high utilization, F2FS uses adaptive logging.

• Only node segment cleaning is done.

• Even in 97.5% util., WAF is less than 1.025.

Without adaptive logging, WAF goes up to more than 3.

Test condition:
120GB of 250GB (SATA SSD)
Util (Cold : Hot) = 80%(60:20), 90%(60:30), 95%(60: 35), 97.5%(60:37.5)
Workload : 20GB 4KB random writes, 10 iterations

- 15/19 -

Mobile Benchmark

In F2FS, more than 90% of writes are sequential.

F2FS reduces write amount per fsync by using roll-forward recovery.

• If checkpoint is done per fsync, write amount in SQLite insert test is 37%

more than Ext4, and normalized performance is 0.88.

Btrfs and nilfs2 performed poor than ext4.

• Btrfs: heavy indexing overheads, Nilfs2: periodic data flush

- 16/19 -

Server Benchmark

Fileserver: discard size matters in SATA SSD due to interface

overhead.

For a PCIe device that has high random write throughput,

reducing write amount is more important than using sequential write

pattern.

- 17/19 -

Conclusions

F2FS features

• Flash friendly on-disk layout -> align FS GC unit with FTL GC unit,

• Cost effective index structure -> restrain write propagation,

• Multi-head logging -> cleaning cost reduction,

• Adaptive logging -> graceful performance degradation in aged condition,

• Roll-forward recovery -> fsync acceleration.

F2FS shows performance gain over other Linux file systems.

• 3.1x (iozone) and 2x (SQLite) speedup over Ext4

• 2.5x (SATA SSD) and 1.8x (PCIe SSD) speedup over Ext4

F2FS is publicly available, included in Linux mainline kernel since

Linux 3.8.

- 18/19 -

Misc.

 Through 'mount option'
 background_gc=on/off
 disable_roll_forward
 discard
 no_heap
 nouser_xattr
 noacl
 active_logs=2/4/6
 diable_ext_identify
 Inline xattr/data/dentry
 flush_merge
 nobarrier
 fastboot
 extent cache

 Through 'sysfs'
 idle_time
 reclaim_segments
 max_small_discards
 ipu_policy
 min_fsync_blocks
 max_victim_search
 dir_level
 ram_thresh

 Through 'ioctl'
 Atomic write
 FITRIM
 Shutdown

 Through 'mkfs.f2fs'
 heap style allocation
 over provision ratio
 # of segments per section
 # of sections per zone
 file extention
 discard

- 19/19 -

Deployments

• Motorola Droid family (2013)

• Moto X (2013/2014)

• Moto G family (2013/2014)

• Google Nexus 9 (2014)

How to tune F2FS

