
Request-Oriented Durable Write 
Caching for Application Performance

appeared in USENIX ATC '15

Jinkyu Jeong
Sungkyunkwan University



2/35

Introduction

• Volatile DRAM cache is ineffective for write
– Writes are dominant I/Os [FAST’09, FAST’10, FAST’14]

• Non-volatile write cache (NVWC) provides
– Fast response for write w/o loss of durability
– NVWC candidates:

NV-DRAMPCM MRAMFlash

[Bhadkamkar et	al.,	FAST’09] BORG:	Block-reORGanization for	self-optimizing	storage	systems
[Koller et	al.,	FAST’10] I/O	deduplication:	Utilizing	content	similarity	to	improve	I/O	performance
[Harter	et	al.,	FAST’14]	Analysis	of	HDFS	under	HBase:	 a	Facebook	messages	 case	study

3D	Xpoint

PerformanceGB/$



3/35

Non-volatile Write Cache Usage

• Simple caching policy

Backing	Storage

Operating	System

P1 P2

Write

P3

Write Write

Application

Blindly	caching	all	writes

Lazily	writing	back	to	storage

NVWC



4/35

Non-volatile Write Cache Usage

• Simple caching policy

Backing	Storage

Operating	System

P1 P2

Write

P3

Write Write

Application

NVWC Blindly	caching	all	writes

Lazily	writing	back	to	storage

No	consideration	for	
application	performance



5/35

Impact on Application Performance

• Illustrative experiment

Backing	Storage

Operating	System

P1 P2

Write

P3

Write Write

PostgreSQL RDBMS

32MB	NV-DRAM	or	4GB	Flash	SSD

2	HDDs	(Data/Log)

NVWC

TPC-C	
workload



6/35

Impact on Application Performance

• Experimental result

Marginal	gain

2.1X
1.7X

Performance	
drop	by	50%!

*	System	perf.

- ~	2.1X improved

*	Application	perf.

- ~	50% degraded



7/35

What’s the Problem?

• Criticality-agnostic contention



8/35

Criticality-Agnostic Contention

• Different write criticality

Backing	Storage

Operating	System

P1

Client

P2

Request Response Application

Application
performance

NVWC

P3



9/35

Criticality-Agnostic Contention

• Different write criticality

Backing	Storage

Operating	System

P1

Client

P2

Request Response Application

NVWC

Critical Non-critical

P3 Background
process/thread



10/35

Criticality-Agnostic Contention

• Different write criticality

Backing	Storage

Operating	System

P1

Client

P2

Request Response Application

NVWC

Critical Non-critical

P3

*	Contentions

- Capacity	contention

- Bandwidth	contention



11/35

Criticality-Agnostic Contention

Backing	Storage

Operating	System

P1

Client

P2

Request Response Application

Bounded	writeback
throughput

Critical Non-critical

P3

Frequent
write	stalls

• Capacity contention



12/35

Criticality-Agnostic Contention

Backing	Storage

P1

Client

P2

Request Response Application

Sufficient	free	blocks

Critical Non-critical

P3

Excessive	
queueing	delay

C HeadNCNCNCNCNCWBWBWBWB

• Bandwidth contention



13/35

• Request-oriented caching policy

Our Approach

Backing	Storage

Operating	System

P1 P2

Application

NVWC

Critical Non-critical

P3

Caching	critical
writes	only

*	Definitions

- Critical	process	(CP):	a	process	

handling	 request

- Critical	write:	a	write	awaited	

by	a	critical	proc.

Client

CP NCP NCP

Sync	I/O Async I/O

Critical	I/O



14/35

Challenge

• How to accurately detect critical writes

• Types of critical write
– Sync. writes from critical processes
– Dependency-induced critical writes
• Process dependency-induced
• I/O dependency-induced



15/35

• Process dependency

B3
B4
B5

Dependency Problem

NCP

CP

Lock

Wake

Wait	for	B1

Process	
Dep.

B1



16/35

B1
B2

Dependency Problem

• I/O dependency
NCP

CP
Sync Complete

I/O
Dep.

Wait	for	B2

B3
B4
B5

*	Example	scenarios:
- CP	fsync() to	a	block	under	writeback	issued	by	NCP
- CP	tries	to	overwrite fs	journal	buffer	under	writeback



17/35

Critical Write Detection

• Critical process identification
– Application-guided identification



18/35

Critical Process Identification

• Application-guided identification

NCPNCPCPCP

Operating	System

NVWC

API

Backing	Storage

Client	1 Client	2
Application

NCP



19/35

Critical Write Detection

• Critical process identification
– Application-guided identification

• Dependency resolution
– Criticality inheritance protocols
• Process criticality inheritance
• I/O criticality inheritance
• Blocking object tracking



20/35

B1B1

Criticality Inheritance Protocols

• Process criticality inheritance

Lock
Wake

Inherit

B2
B3
B4

NCP

CP



21/35

B2

Criticality Inheritance Protocols

• I/O criticality inheritance

Sync

CompleteReissue

Discard B3
B4
B5

B1
B2

Key	issue:
caching	the	dependent	 write	outstanding	 to	disk	w/o	side	effects

NCP

CP



22/35

B1

Criticality Inheritance Protocols

• Blocking object tracking
– Handling cascading dependencies

Lock
Wake

Inherit

B2
B3
B4

NCP

CP

B1
WakeReissue



23/35

Evaluation

• Implementation on Linux 3.13 w/ FlashCache 3.1

• Application studies
– PostgreSQL database

– Redis key-value store

Client	1

Backend1 Backend2

Client	2

Log	
writer

WriterCheck
pointer

Backend1 Backend2

Client	1,2,3,…

Master
Log	

rewriter
Snap
shotterMaster



24/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

FlashCache

Server	Machine

TPC-C	/	YCSB

Client	Machine

1Gbps	



25/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

*	Caching	policies
- ALL	(default)

FlashCache

Server	Machine

No
discretion

TPC-C	/	YCSB

Client	Machine

1Gbps	



26/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

*	Caching	policies
- ALL	(default)
- SYNC

FlashCache

Server	Machine

Sync.	
writes

TPC-C	/	YCSB

Client	Machine

1Gbps	

Async.
writes



27/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

*	Caching	policies
- ALL	(default)
- SYNC
- CP

FlashCache

Server	Machine

CP	sync.	
writes

TPC-C	/	YCSB

Client	Machine

1Gbps	

Rest	of	
writes



28/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

*	Caching	policies
- ALL	(default)
- SYNC
- CP
- CP+PI

FlashCache

Server	Machine

+	Process
criticality
inheritance

TPC-C	/	YCSB

Client	Machine

1Gbps	

Rest	of	
writes



29/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

*	Caching	policies
- ALL	(default)
- SYNC
- CP
- CP+PI
- CP+PI+IOIFlashCache

Server	Machine

+	I/O
criticality
inheritance

TPC-C	/	YCSB

Client	Machine

1Gbps	

Rest	of	
writes



30/35

• Experimental setup

Evaluation

PostgreSQL	/	Redis

4GB	ramdisk	/
256GB	SSD

10K	RPM	HDD	x2

*	Caching	policies
- ALL	(default)
- SYNC
- CP
- CP+PI
- CP+PI+IOI
- WAL	(PostgreSQL)

FlashCache

TPC-C	/	YCSB

Client	MachineServer	Machine

1Gbps	

Trx log	
writes

Rest	of	
writes



31/35

PostgreSQL Performance

• TPC-C workload w/ ramdisk

SufficientScarce

80% Same	performance
w/	72%	less	cached	writes

Our	scheme	resolves	
capacity	contention	&	
runtime dependencies



32/35

PostgreSQL Performance

• TPC-C workload w/ SSD

SufficientSufficient

2.2X

Our	scheme	resolves
bandwidth contention	&	
runtime dependencies



33/35

Redis Performance

• Update-heavy workload w/ 16GB SSD

47%	better	throughput Improved	tail	latency

13X	better	@	99.9th %ile
(50ms vs.	649ms)

Our	scheme	improves	
request	throughput	&
request	latency



34/35

Conclusion

• Key observation
– Each write has different performance-criticality

• Request-oriented caching policy
– Solely utilizes NVWC for application performance
– Improves performance while reducing cached writes

• Future work
– Criticality-aware I/O management without NVWC
– Application to user-interactive environments



35/35

Q&A

• Thank you


